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Abstract. The integer solution of diophantine equations 𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) 

and  𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍)  is a matter of great concern. Researchers study for 

different 𝑚,𝑛 and 𝐷1, 𝐷2, and obtained some correlation results as follows. 

When 𝑚 = 1,𝑛 = 1, the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 =
1.At present, there are only a few conclusions on it, see Ref [1] and [2].When 𝑚 = 1,𝑛 = 4, 

the integer solution see Ref [3] - [9].When 𝑚 = 1,𝑛 = 16, the previous conclusions see Ref 

[10]. 

When 𝑚 = 1,𝑛 = 49, the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 =
49. In this case, 𝐷1 = 47, 𝐷2 can be expressed as 2𝑡𝑝1

𝑎1𝑝2
𝑎2𝑝3

𝑎3𝑝4
𝑎4 where 𝑎𝑖 = 0 or 1 for 

1 ≤ 𝑖 ≤ 4, and 𝑡 ∈ 𝑍+, 𝑝𝑠(1 ≤ 𝑠 ≤ 4) are different odd primes. Up to now, there is no relevant 

result on the integer solution of 𝑥2 − 47𝑦2 = 1  and 𝑦2 − 𝑃𝑧2 = 49 , this paper mainly 

discusses the integer solution of it. 

1.  Introduction 

The integer solution of diophantine equations 

𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) and  𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍)           (1) 

is a matter of great concern. Researchers study for different 𝑚 ,𝑛  and 𝐷1, 𝐷2  , and obtain some 

correlation results as follows. 

When 𝑚 = 1,𝑛 = 1, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 1                                                   (2) 

At present, there are only a few conclusions on (2), see Ref [1] and [2]. 

When 𝑚 = 1,𝑛 = 4, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 4                                                   (3) 

For even numbers 𝐷1, 𝐷2, the integer solution of  (3), see Ref [3] - [9]. 

When 𝑚 = 1,𝑛 = 16, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 16                                                   (4) 

The previous conclusions on (4), see Ref [10]. 

When 𝑚 = 1,𝑛 = 49, the diophantine equations turns into: 

 𝑥2 − 𝐷1𝑦2 = 1and 𝑦2 − 𝐷2𝑧2 = 49                                                 (5) 

In this case, 𝐷1 = 47, 𝐷2 can be expressed as 2𝑡𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3𝑝4

𝑎4 where 𝑎𝑖 = 0 or 1 for 1 ≤ 𝑖 ≤
4, and 𝑡 ∈ 𝑍+, 𝑝𝑠(1 ≤ 𝑠 ≤ 4) are different odd primes. Up to now, there is no relevant result on the 
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integer solution of 𝑥2 − 47𝑦2 = 1  and 𝑦2 − 𝑃𝑧2 = 49 , this paper mainly discusses the integer 

solution of it. 

2.  Critical lemma 

Lemma 1[11] Let 𝑝 be an odd prime number, there is no integer solution of the diophantine 

equation 𝑥4 − 𝑝𝑦2 = 1 except 𝑝 = 5, 𝑥 = 3, 𝑦 = 4 and 𝑝 = 29, 𝑥 = 99, 𝑦 = 1820. 

Lemma 2[12] There is 1 sets of solutions of the diophantine equation a𝑥4 − 𝑏𝑦2 = 1 at most 

when a is a square number which is greater than 1. 

Lemma 3[13] Let 𝐷 be a square-free positive integer, then the equation 𝑥2 − 𝐷𝑦4 = 1 has two 

sets of positive integer solutions (𝑥, 𝑦) at most. Furthermore, the necessary and sufficient condition of 

it is 𝐷 = 1785 or 𝐷 = 28560, or 2𝑥0 and 𝑦0 are square numbers where (𝑥0, 𝑦0)  is the basic solution 

of  𝑥2 − 𝐷𝑦4 = 1. 

Lemma 4  Suppose that all the integer solution on Pell equation 𝑥2 − 7𝑦2 = 1  could be 
(𝑥𝑛, 𝑦𝑛), 𝑛 ∈ 𝑍, for the arbitrary 𝑛 ∈ 𝑍, it has the following properties on (𝑥𝑛, 𝑦𝑛): 

(I) 𝑥𝑛 is a square number if and only if 𝑛 = 0. 

(II)
𝑥𝑛

48
 is a square number if and only if 𝑛 = ±1. 

(III) 
𝑦𝑛

7
 is a square number if and only if 𝑛 = 0 or 𝑛 = 1. 

Proof: (I) Let 𝑥𝑛 = 𝑎2, we will get 𝑎4 − 47𝑦2 = 1, from Lemma 1 we can get there are only 2 

integer solution (𝑎, 𝑦) = (±1,0) on 𝑎4 − 47𝑦2 = 1 , so 𝑥𝑛 = 1, 𝑛 = 0. On the contrary, it also holds. 

(II) Let 
𝑥𝑛

48
= 𝑎2, we will get 2304𝑎4 − 47𝑦2 = 1, from Lemma 2 we can get there are only 4 

integer solution (𝑎, 𝑦) = (±1, ±7) on 2304𝑎4 − 47𝑦2 = 1 , so 𝑥𝑛 = 48, 𝑛 = ±1. On the contrary, it 

also holds. 

(III) Let 
𝑦𝑛

7
= 𝑏2, we will get 𝑥2 − 2303𝑏4 = 1, from Lemma 3 we can get there are only 6 integer 

solution (𝑥, 𝑏) = (±1,0), (±48, ±1) on 𝑥2 − 2303𝑏4 = 1 , so 𝑦𝑛 = 0 or 𝑦𝑛 = 7. 𝑛 = 0 or 𝑛 = 1. On 

the contrary, it also holds. 

3.  Proof of main theorem 

By using elementary method such as congruence, the integer solution of the diophantine equations on 

𝑥2 − 47𝑦2 = 1 and  𝑦2 − 𝑃𝑧2 = 9 can be obtained. 

3.1.  Theorem 

Let 𝑝𝑠(1 ≤ 𝑠 ≤ 4)  are diverse odd primes, 𝑃 = 2𝑘𝑝1
𝑎1 ⋯ 𝑝𝑠

𝑎𝑠(𝑎𝑖 = 0 𝑜𝑟 1,1 ≤ 𝑖 ≤ 4, 𝑘 ∈ 𝑍+) , then 

the diophantine equations  

𝑥2 − 47𝑦2 = 1 and  𝑦2 − 𝑃𝑧2 = 49                                              (6) 

(i) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±672) when 𝑃 = 2 × 17 × 271. 

(ii) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±336) when 𝑃 = 23 × 17 × 271. 

(iii) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±168) when 𝑃 = 25 × 17 × 271. 

(iv) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±84) when 𝑃 = 27 × 17 × 271. 

(v) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±42) when 𝑃 = 29 × 17 × 271. 

(vi) has common solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±21) when 𝑃 = 211 × 17 × 271. 

(vii) has only nontrivial solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  when 𝑃 ≠ 2𝛼 × 17 × 127(𝛼 =
1,3,5,7,9,11). 



3

1234567890‘’“”

AMIMA 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 382 (2018) 052037 doi:10.1088/1757-899X/382/5/052037

 

 

 

 

 

 

3.2.  Proof of main theorem 

3.2.1.  Primary analysis.  

Let (𝑥1, 𝑦1) be the basic solution of the Pell equation 𝑥2 − 47𝑦2 = 1, then (𝑥1, 𝑦1) = (48,7).It means 

that all solution of the Pell equation 𝑥2 − 47𝑦2 = 1 is: 

𝑥𝑛 + 𝑦𝑛√𝑃 = (48 + 7√47)𝑛, 𝑛 ∈ 𝑍. 

It is easily shown that 

(i) 𝑦𝑛
2 − 49 = 𝑦𝑛+1𝑦𝑛−1; 

(ii) 𝑦2𝑛 = 2𝑥𝑛𝑦𝑛; 

(iii) 𝑦2𝑛+1 ≡ 1(𝑚𝑜𝑑2); 

(iv) 𝑥2𝑛 ≡ 1(𝑚𝑜𝑑2), 𝑥2𝑛+1 ≡ 48(𝑚𝑜𝑑96); 

(v) gcd(𝑥𝑛 , 𝑦𝑛) = 1, gcd(𝑥𝑛+1, 𝑦𝑛+1) = 1, gcd(𝑥𝑛, 𝑥𝑛+1) = 1, gcd(𝑦𝑛, 𝑦𝑛+1) = 7; 

(vi) gcd(𝑥2𝑛 , 𝑦2𝑛+1) = gcd(𝑥2𝑛+2, 𝑦2𝑛+1) = 1, gcd(𝑥2𝑛+1, 𝑦2𝑛) = gcd(𝑥2𝑛+1, 𝑦2𝑛+2) = 48. 

(vii) 𝑦2𝑛+2 = 96𝑦𝑛+1 − 𝑦𝑛, 𝑦0 = 0, 𝑦1 = 7; 𝑥𝑛+2 = 96𝑥𝑛+1 − 𝑥𝑛, 𝑥0 = 1, 𝑥1 = 48. 

Suppose that (𝑥, 𝑦, 𝑧) = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝑛 ∈ 𝑍 is the integer solution of the diophantine equation (6), 

from(I), we can get: 

𝑦𝑛
2 − 49 = 𝑦𝑛+1𝑦𝑛−1                                                            (7) 

from 𝑦2 − 𝑃𝑧2 = 49 of (6) , we can get: 

𝑃𝑧2 = 𝑦𝑛+1𝑦𝑛−1                                                               (8) 

As a result the equation (8) will be: 

Case 1 𝑛 is an positive odd number. 

Case 2 𝑛 is an positive even number. 

3.2.2.  Discusion on Case 1 

Let 𝑛 = 2𝑚 − 1, 𝑚 ∈ 𝑍,(8) is equivalent to: 

𝑃𝑧2 = 𝑦2(𝑚−1)𝑦2𝑚                                                            (9) 

from (II),(9) is equivalent to: 

𝑃𝑧2 = 4𝑥𝑚−1𝑦𝑚−1𝑥𝑚𝑦𝑚                                                     (10) 

1. 𝑚 is an positive odd number. 

From ( Ⅴ ), we can get gcd(𝑥𝑚−1, 𝑦𝑚−1) = gcd(𝑥𝑚 , 𝑦𝑚) = 1 ,  gcd(𝑥𝑚, 𝑥𝑚−1) = 1 ,   

gcd(𝑥𝑚−1, 𝑦𝑚) = 1, gcd(𝑦𝑚, 𝑦𝑚−1) = 7 , it means gcd (
𝑦𝑚

7
,

𝑦𝑚−1

7
) = 1 . From (VI), we can get 

 gcd(𝑥𝑚, 𝑦𝑚−1) = 48, it means gcd (
𝑥𝑚

48
,

𝑦𝑚−1

48
) = 1. 

Therefore, 𝑥𝑚−1，
𝑦𝑚−1

336
，

𝑥𝑚

48
，

𝑦𝑚

7
 are pairwise coprime. 

1.1 𝑘 is an positive odd number. 

Let 𝑘 = 2𝑙 − 1,(10) is equivalent to: 

𝑃𝑧2 = 8𝑥4(𝑙−1)𝑥4𝑙−3𝑥2(𝑙−1)𝑦2(𝑙−1)𝑦4𝑙−3                                (11) 

From (II),(11) is equivalent to: 

𝑃𝑧2 = 16𝑥4(𝑙−1)𝑥4𝑙−3𝑥2(𝑙−1)𝑥𝑙−1𝑦𝑙−1𝑦4𝑙−3                             (12) 

From (Ⅴ ), we can get  gcd(𝑥𝑙−1, 𝑦𝑙−1) = 1 , it means 𝑥4(𝑙−1), 𝑥𝑙−1,
𝑦𝑙−1

336
, 𝑥2(𝑙−1),

𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are 

pairwise coprime when 𝑙  is an odd number, and 𝑥4(𝑙−1),
𝑥𝑙−1

48
,

𝑦𝑙−1

7
, 𝑥2(𝑙−1),

𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are pairwise 

coprime when 𝑙 is an even number. 

From (III), we can get 𝑦4𝑙−3 ≡ 1(𝑚𝑜𝑑2), it means2 ∤ 𝑦4𝑙−3, so 𝑦4𝑙−3 is an odd number. From (IV), 

we can get 𝑥4(𝑙−1), 𝑥2(𝑙−1),
𝑦4𝑙−3

48
 are odd numbers. 𝑥𝑙−1 is an odd number when 𝑙 is an odd number and 

𝑥𝑙−1

48
 is an odd number when 𝑙 is an even number. Therefore, 𝑥4(𝑙−1), 𝑥𝑙−1, 𝑥2(𝑙−1),

𝑥4𝑙−3

48
, 

𝑦4𝑙−3

7
 are odd 
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numbers when 𝑙 is an odd number and 𝑥4(𝑙−1),
𝑥𝑙−1

48
, 𝑥2(𝑙−1),

𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are odd numbers when 𝑙 is an 

even number. 

From Lemma 4, we can get 𝑥4(𝑙−1), 𝑥2(𝑙−1), 𝑥𝑙−1,
𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are square numbers if and only if 𝑙 =

1, 
𝑥𝑙−1

48
 is a square number if and only if 𝑙 = 2 or 𝑙 = 0. 

So, 𝑥4(𝑙−1), 𝑥2(𝑙−1), 𝑥𝑙−1,
𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are non-square numbers when odd number 𝑙 ≠ 1, and it has 5 

diverse odd primes. Therefore, (12) is impossible, which means (6) have no integer solution. 

𝑥4(𝑙−1), 𝑥2(𝑙−1),
𝑥𝑙−1

48
,

𝑥4𝑙−3

48
,

𝑦4𝑙−3

7
 are non-square numbers when even number 𝑙 ≠ 0,2, and it has 5 

diverse odd primes, which is contradict with 𝑃 = 2𝑡𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3𝑝4

𝑎4, Therefore, (12) is impossible, 

which means (6) have no integer solution. 

When 𝑙 = 1 , (11) is equivalent to:  𝑧2 = 8𝑥0
2𝑥1𝑦0𝑦1 = 0 , so 𝑧 = 0 ,it means that diophantine 

equation (6) has and only has common solution (𝑥, 𝑦, 𝑧) = (±48, ±7,0). 

When 𝑙 = 0,2, (12) is equivalent to: 𝑃𝑧2 = 16𝑥−4𝑥−3𝑥−2𝑥−1𝑦−1𝑦−3 = 16𝑥4𝑥3𝑥2𝑥1𝑦1𝑦3 , From 

(IV), we can get 𝑥4, 𝑥2  are odd numbers, from (III), we can get 𝑦1, 𝑦3  are odd numbers, it means 

𝑃𝑧2 = 28 × 3 × 𝑥4𝑥3𝑥2𝑦1𝑦3, Therefore, the right part of (12) has 5 diverse odd primes at least, which 

is contradict with 𝑃 = 2𝑡𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3𝑝4

𝑎4, Therefore, (12) is impossible, which means (6) have no 

integer solution. 

1.2 𝑘 is an positive even number. 

From (III), we can get 𝑦𝑘−1, 𝑦2𝑘−1 are odd numbers, it means 
𝑦𝑘−1

7
,

𝑦2𝑘−1

7
 are odd numbers too, 

From (IV), we can get 𝑥2𝑘−1,
𝑥𝑘−1

48
,

𝑥2𝑘−1

48
 are odd numbers. 

From Lemma 4, we can get 𝑥2(𝑘−1),
𝑦2𝑘−1

7
 are square numbers if and only if 𝑘 = 1. 

𝑥𝑘−1

48
 is a square 

number if and only if 𝑘 = 0 or 𝑘 = 2. 
𝑥2𝑘−1

48
 is a square number if and only if 𝑘 = 0 or 𝑘 = 1. 

𝑦𝑘−1

7
 is a 

square number if and only if 𝑘 = 1  or 𝑘 = 2 . So, 𝑥2𝑘−1,
𝑥𝑘−1

48
,

𝑥2𝑘−1

48
,

𝑦𝑘−1

7
,

𝑦2𝑘−1

7
 are non-square 

numbers when even number 𝑘 ≠ 0,2, and it has 5 diverse odd primes. Therefore, (12) is impossible, 

which means (6) have no integer solution. 

When 𝑘 = 0 , (11) is equivalent to:  𝑃𝑧2 = 8𝑥2𝑦1
2𝑥1

2 = 211 × 32 × 72 × 17 × 271 , so 𝑧 =
21, 𝑃 = 211 × 17 × 271  or 𝑧 = 42, 𝑃 = 29 × 17 × 271  or 𝑧 = 84, 𝑃 = 27 × 17 × 271  or 𝑧 =
168, 𝑃 = 25 × 17 × 271  or 𝑧 = 336, 𝑃 = 23 × 17 × 271  or 𝑧 = 672, 𝑃 = 2 × 17 × 271 , From (6), 

we can get: 

(6) has common solution (𝑥, 𝑦, 𝑧) = (±48, ±7,0)  when 𝑃 = 2𝛼 × 17 × 127(𝛼 = 1,3,5,7,9,11) 

and has nontrivial solution (𝑥, 𝑦, 𝑧) = (±442224, ±64505, ±672)  when 𝑃 = 2 × 17 × 271 . 

(𝑥, 𝑦, 𝑧) = (±442224, ±64505, ±336)  when 𝑃 = 23 × 17 × 271 , (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±168) when 𝑃 = 25 × 17 × 271., (𝑥, 𝑦, 𝑧) = (±442224, ±64505, ±84) when 

𝑃 = 27 × 17 × 271 , (𝑥, 𝑦, 𝑧) = (±442224, ±64505, ±42)  when 𝑃 = 29 × 17 × 271 , (𝑥, 𝑦, 𝑧) =
(±442224, ±64505, ±21) when 𝑃 = 211 × 17 × 271. 

When 𝑘 = 2, (11) is equivalent to: 𝑃𝑧2 = 8𝑥2𝑥1
2𝑦1𝑦3𝑦 = 211 × 72 × 532 × 17 × 19 × 97 × 271, 

it has 5 diverse odd primes, which is contradict with 𝑃 = 2𝑡𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3𝑝4

𝑎4 , Therefore, (12) is 

impossible, which means (6) have no integer solution. 

2. 𝑚 is an positive even number. 

Imitating the previous proof of 1 we can get the diophantine equation (7) only has common 

solution  (𝑥, 𝑦, 𝑧) = (±48, ±7,0). 

3.2.3.  Discusion on Case 2 

From (III), we can get 𝑦𝑛−1 ≡ 𝑦𝑛+1 ≡ 1(𝑚𝑜𝑑2), it means 𝑦𝑛−1, 𝑦𝑛+1 are odd numbers. Therefore, the 

left part of (8) is an even number, when it’s right is an odd number, it is self-contradiction. Therefore, 

diophantine equation (6) have no integer solution. 

To sum up, the theorem is proved. 
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4.  Conclusion 

The integer solution of diophantine equations 𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) and 𝑦2 − 𝐷2𝑧2 =

𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍) is a matter of great concern. 

By using elementary number theory methods,we solved the common solution and nontrivial 

solution on the diophantine equation when 𝑚 = 1 , 𝑛 = 49 ,  𝐷1 = 47,  𝐷2  can be expressed as 

2𝑡𝑝1
𝑎1𝑝2

𝑎2𝑝3
𝑎3𝑝4

𝑎4  where 𝑎𝑖 = 0 or 1 for 1 ≤ 𝑖 ≤ 4, and 𝑡 ∈ 𝑍+ , 𝑝𝑠(1 ≤ 𝑠 ≤ 4) are different odd 

primes. 
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