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Abstract. Themicrostructures of 20, 30, 40, 45, T9 and T11 commercial carbon steels were 

observed by optical microscopy, scanning electron microscopy and transmission election 

microscopy. It was found that the internal twins in martensite of common steels is basically a 

complete twin, and internal twin plane of mutually parallel martensite units in a martensite 

packet have a same crystallographic orientation, namely, forming "the transgranular twin line" 

or "interpenetration twinline". The underlying mechanism of "complete twin" and" the 

transgranular twin line" were explored. Both all are to form in the martensite transformation 

process. In order to promote the growth of martensitic nuclei in initial stage, the associated 

nucleus with twinning relationship had been formedat a semi-coherent end plane of nuclei 

which possesses high energy, and forming transformation twins through "double change". 

Therefore, transformation twins are usually all "complete twin". In the martensite packet, all 

the martensite plates of mutual parallelism are to form the associated nucleus with twin 

interface plane at a side of original " twin block" of the martensite and grow up, so a martensite 

packet all have the identical "trans-granular twin line". In the formation process of "complete 

twinning" and" trans-granular twin line", don't involve the mechanics properties of material, 

and mainly decide from nucleation work and nucleus growth work. It is thus clear that, having 

the complete twins in the martensite doesn't mean that the critical resolved shear stress (CRSS) 

of slipping exceeded the CRSS of twinning. 

1. Introduction 

The twinning in martensite has two morphologies: complete twin and partial twin. The current 

complete twins all were to observe in the lenticular martensite and coarseplate martensite of Fe-Ni and 

Fe-Cr high alloys [1~6]. In lenticular martensite, we also have seen partial twin [7, 8].Generally 

considered, martensite in ordinary steel all is "partial twin martensite". Most are of twinning {1 1 2} 

M, sometimes are twinning {0 1 1} M [13]. Usually the {1 1 2} M twin was thought to be 

transformation twins, while the {0 1 1} M was a deformation twinning when collaborative 

deformation. Up to now believe that "transformation twins are through the plastic deformation of 

martensite to generate [14]."Sub-structure" within the martensite is a product of local (heterogeneous) 

twin shear during phase transition [15]. In the process of martensite transformation, plastic 

deformation of high carbon martensite is by means of twinning to carry out [14]. The twins generated 

were called "transformation twins" [6, 7].That is to say, ―twins‖ is not in accordance with the produced 

causes of twins, but to be defined according to "the twin to form in what process‖. In their eyes, there 

is no difference between "transformation twins" and "deformation twinning" in essence, or to say, 

"internal twins" all are generated by the "twinning shear", the difference is only "the transformation 

twins are to appear in the process of phase transition". 
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In this paper, the results of the experiment have confirmed that in martensite of carbon steel 

internal twins all are complete twin. 

2. Materials and procedures 

Using six kinds of commercial steel: 20(0.19%C), 30(0.27%C), 40(0.38%C), 45(0.46%C), T9 

(0.86%C), T11 (1.12%C), etc. Machined into sizeΦ10 x 5 mm, all test specimens possess a central 

hole with diameter of 3mm. All samples were heated in controlled atmosphere furnace, quenching 

water from 1000 ~ 1350°C. 

After samples have been prepared, their microstructures were observed using a Polyvar MET 

optical microscope, scanning electron microscope S-570 and Philip ECNAI-G2 transmission electron 

microscope. 

The specimens of transmission electron microscopy were etched with saturate alcohol of picric acid 

containing 1.3% HNO3, 2.1%HCl and 2.7%CuCl2. Operating temperature was around -10°C. 

3. Experimental results and analysis 

3.1. Morphology of internal twins in common steel 

Fig. 1 shows the images of whole packet martensite of low carbon steel 20 and medium steel 40 

quenched from high temperature. The morphology of these two kinds of packet martensite is entirely 

different. Under optical microscope, 20 steel is a packet structure which is composed of dark and light 

double contrast blocks, as shown in  Fig. 1 (A); while the 40 steel is all a single contrast packet 

structure, as illustrated in Fig. 1 (D).Under the SEM, the smallest unit of martensite in 20 steel appears 

a parallel thinplate-shape with similar thickness and straight line interface, such as in Fig.1 (B);while 

the 40 steel is made up the parallel fineplate with different size and curved interface, shown in 

Fig.1(E).Under the TEM, the most substructure of 20 steel are dislocation tangles; By means of 

rotating the thin foil specimen 7.2 degrees, in some block was observed internal twins, average 

spacing of twins plane is about 0.227 μ m, see Fig. 1 (C). After 40 steel rotates 9°, it also shows a lot 

of internal twins, the average distance is of about 0.128 μ m, see Fig. 1 (F); twin density increases 

dramatically. 

 

 

 

Figure 1. Optical micrographs (A, D) and SEM ((B, E) and TEM (C, F)) of steel 20 (A~C) and T11 

(D~F) quenched from 1100°C 

Worthy of special attention are: Fig.1 (C) is "complete twin" to across the whole martensite single 

crystal, and the orientation of twinning plane is the same with the around single crystal. Twinning in 

Fig.1 (F) also is to across the martensite plate, since only local corrosion is too thin, it was punctured 

by the electron beam, don't appear the diffraction contrast image of twinning, it thus was often 

mistaken for "partial twins". 
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The observations of Fig.2 confirmed once again the universality of the above conclusion. The 

internal twins of 30 steel (Fig. 2 A) not only traverses the parallel thinplate crystal, and the twin plane 

of 6 thinplate crystals in a field view is a same orientation. The orientation of internal twin plane in a 

same block all is identical. A martensite plate (sheet A) in Fig. 2 (B) possesses a midrib line, the dense 

internal twins traversed through the whole martensite plate. In addition its twin plane with a above 

martensite plate (sheet B) have the same orientation. 

 

Figure 2. TEM of 30 and T11 steels quenched from 1100°C (A):  rotating 6.8°; (B) rotating 3.5° 

 

Usually, above a martensite plate (Fig. 2(B)) was often regard as a partial twin, this is a 

misunderstanding. At this time, the diffraction contrast image of internal twins is the above being wide, 

the below narrow, presenting a tapering angle shape. This appearance is caused by a thin foil specimen 

preparation process. Here is make by a double corrosion into the non-uniform thickness, as shown in 

Fig. 3 (A), the local of thin foil specimens becomes a triangle podetium. After twotriangle twinning 

planes produced diffraction, the intensity of the incident electron beam was weaken, the image of 

△ a1b1c1 (light colored triangles) and △ a2b2c2 (hatching triangle) displayed. Diffraction contrast 

image of triangle twinning plane overlaps in the thicker of thin foil sample, exhibiting the black color. 

Only in the thiner of thin foil sample, the diffraction contrast image of internal twins does not overlap, 

to show the image with tapering angle shape, as presented in the graph (a) of Fig. 3 (B). 

 

Figure 3. Schematic illustration of formed image of internal twins 

 

Along with the thick end of sample thinning, and the thin end thickening, diffraction contrast image 

will show a rectangle, as shown in graph (b) of Fig. 3 (B); the overlap region of diffraction contrast 

image also becomes small. This is the reason of martensite B in Fig. 2 showing a black strip shape. 

The both ends of the internal twins in Fig. 1 (F) is not complete, showing sharp, also is such to form. If 

the sample thickness is uniform everywhere, so the diffraction contrast image of twinning plane will 

become as shown in Fig. 3 (c), presenting the parallel narrow strip. The internal twins in Fig. 1 (C) are 

such to form. Just because the sample surface is not flat, so that the diffraction contrast image edge of 

internal twins is not smooth. When the sample is very thin, internal twinning plane will become into a 

thin strip. After it produces diffraction, if the intensity of incident electron beam is very weak, internal 
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twinning will emerge as many parallel lines (see Fig. 3 (d)). The most diffraction contrast images of 

twinning plane in martensite plate A in Fig. 2 (B) are straight line, it is because this place of sample is 

thinner and uniform. 

It should be pointed out; we also observed some TEM images in which internal twins are located in 

centre of martensite plate, such as in Fig. 4B. They are not a "partial twin "which was considered by 

literature [9]; this phenomenon is entirely caused by local deep corrosion of thin foil specimens. 

Because of the different orientation of martensite on both sides of the grain boundary, the vicinity 

of the boundary area was etched too much, very thin, while the central is thick; the diffraction contrast 

image of thin twin plane does not show (white color) or too thick, diffraction contrast image overlap, 

also not see (black color), resulting a result of Fig.4B. 

 

 

Figure 4. TEM of T9 steel quenched from 1000°C (not tilted), 40Cr steel quenched from 1150°C 

(1.5°tilted)  

 

In Fig.4A, whole martensite is all complete twinning within the two plates of parallel martensite. 

Not only the whole of internal twin lines is parallel, moreover, some are connected together in a 

straight line.Illustrated fully that they are closely connected within the process of their formation. 

Entire twin planes possessed the same orientation in a packet martensite, were called "transgranular 

twin line" or "interpenetration twin".  

 

 

Figure 5. TEM of 0.7%C steel [18] 

 

We confirmed two new views: (1) internal twins generated in the process of martensite 

transformation (i.e., the transformation twins) is basically complete twin; (2) in a martensite packet, 

martensite units parallel to each other have a same orientation of twinning plane, that is "transgranular 

twin crystal line". The same observation was also seen unexpectedly by Carr M J. et al [18], fully 

validating our results, but they had not specifically mentioned, either explored the reasons for their 

formation or interpreted their role on martensite transformation. 
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3.2. Complete twins and transgranular twin wire forming reasons 

At present, the interpretation of the above two phenomena has not yet provided. In another paper [22], 

we demonstrate in detail the forming mechanism of internal twins in the martensite transformation 

process. Pointing out that "the transformation twins" is not generated by martensite plasticity shear, 

but rather a product of the growth process of martensite nucleus. This paper proposes a new 

mechanism of twin formation: Relying on the unceasingly changing the growth direction of crystal 

nucleus, making a new produced crystal to have a orientation difference of "twin angle", thereby 

forming a "twin". 

The procedure which can significantly change the "orientation" and do not cause the interface to 

increase, is "double-change" proposed by the data [20].Namely when the crystal nucleus grown, 

because austenitic direction <1 1 2
—

>A changes 60 °, and simultaneously alters austenitic direction  < 1 

1 0 > A parallel to martensite nucleus, also yielded orientation difference 10 °32 ′(i.e. 

60 °+10 °32 ′=70 °32 ′) , thus appeared the misorientation of twinned angle (70 °32 ′), making the 

formation of twin interface between two adjacent martensite crystals. It can be seen from here that 

internal twins in martensite is completely to form spontaneously in the process of transformation, in 

order to favor the growth of martensite nucleus. It is an important way of nucleus growth in the early 

period of martensite nucleation. 

"Transgranular twin line" is also on the aforementioned basis to produce. The following will show 

the formation mechanism of "complete twin" and "transgranular twin line" combined with Fig. 6 and 7. 

Because the martensite nucleus size is small, the consumption proportion of interfacial energy in 

the driving force of phase transition is high; the initially formed nucleus is thin film-like, as shown a 

dark blockinplate A in Fig. 6.Only a few atomic layers thick, two main interfaces are parallel to the 

habit plane in order to maintain the minimum interface energy; it hence has thin-plate-like in shape. 

In this moment, the volume free energy only can drop a little, not can thickening; because the 

thickening leads the semi-coherent interface area of nucleus around to increase. This nucleus grows 

towards two other directions, to expand the main interface parallel the habit plane. When the volume 

strain energy and interface energy equals to the driving force, the growth of nucleus a stops, becoming 

a dark square crystal block a in Fig. 6.It is only by way of the "double change" (namely "changing" 

grew up direction, and by the [1 1 2
—

]A into [2 1
—

1
—

]A, and "changing" parallel to the direction of the 

austenite), to continue to grow up, forming a crystal block b with ―twin interface" on the end face of 

the dark square crystal block a; because of "twin interface" reduced "interfacial energy", and prompted 

dark tetragonal block a to obtain transverse grewth conditions, thus becoming into a twin long block 

(light color in Fig. 6). When the crystal block b stops growth, adopts to form a crystal block c with 

twin interface in the bottom of crystal block b, prompting crystal nucleus b also to grow a light twin 

long block(see Fig. 6) . So repeatedly, then it forms a thin film crystal block with many twin interfaces, 

and becomes a film crystal, such as a colored film crystal within martensite plate A. Insomuch as 

"internal twins" in martensite plate A is relying on the growth direction of crystal nucleus to alter the 

70 °32 ′ (i.e. "twin angle) to produce, therefore they all grew into "complete twin". 

On account that the volume of light colored film crystal increases largely, the volume free energy 

decreased much; simultaneously since the volume strain energy increases, making the proportion of 

interfacial energy in nucleus growth work to become small, it creates conditions for the nucleus 

thickening; finally growing into a martensite plate with lots of internal twins, as shown the plate A in 

Fig. 6. It can be seen from here that plate A is through thickening of "colored film crystal" to 

generate.  
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Figure 6. The nucleus growth of packet fine plate martensite  

 

After the plate A stopped growth, through the "double change"[22] to generate a associated nuclei 

with twin interface beside each internal twins, it develops into a plate B which keeps a twin interface 

with plate A. By reason that twin block inplate B all is by way of the formation of associated nucleus 

with twin interface beside the twin block inplate A to produce, hereby all the orientation of twinning 

plane inplate A are preserved. This leads to the orientation of each twinning plane of neighboring 

martensite plate to be same, becomes a communal twin interface line as shown the straight line in Fig. 

5 ~ 7. This "transgranular twin line" traverses two martensite plates. Now the interface between A and 

B plate was called "big twinning plane". 

Four twin blocks (i.e. internal twins) on the left of Fig. 7 (A) is located in the "martensite plate A" 

which has been formed, their internal twin planes are a, b, c, d. The formation of "martensite plate A" 

is to rely on changing the growth direction of internal twins (such as ―arrow‖). 

Associated nucleus (h g K H L B light colored crystal B in the picture) which formed on the side of 

"martensite plate A" is also twinning relationship with martensite plate A, but its twinning plane 

becomes into E F C G H D E (referred to as the "big twinned boundary" in the picture), their mirror 

symmetry relations are as shown the crude dotted arrows in Fig. 7. As a result of that these associated 

crystal nuclei is to grow up on the side of each twin block of the originalplate A, thus keeping the 

original twinning interface (or twin line). After they grow up and become two adjacent martensite 

plates of A and B, this twin line shared, as illustrated in Fig. 7 (B). In this picture, there are three 

martensite plates A, B and C which are parallel to each other and have the twin relationship (that is 

with ―large twin boundary‖); their internal twin planes (the diagonal in the picture) possess the same 

orientation, namely retaining the same "transgranular twin line". "Transgranular twin line" and the 

habit plane are skew. 

In so much that the adjacent twin blocks all keep the twin interface in originalplate A, this is a 

reason why various martensitic fine plates parallel to each other in a cluster have the same 

"transgranular twin line", as presented in Fig. 1 (C) and (F), Fig. 2, Fig. 5 and Fig. 6. 
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Figure 7. Schematic resolved illustration of formation process of packet fine-plate martensite 

 

In the transformation mechanism of fine plate martensite [20], the twinning relationship between 

associated nucleus B and the original nucleus A is the most important, otherwise the adjacent 

martensite plates (such as the associated martensite plate A and B in Fig. 7 (B)) cannot produce, phase 

transition will not be able to continue. 

Fig. 7 (C) is a enlarged diagram of circle "local E" in Fig. (B), marks the two kinds of twinning 

plane: internal twin plane is a-d (i.e. transgranular twin line) and the large twin plane between 

martensite plates A, B, C is e-d. 

As can be seen from above, when formed "complete twin" and "transgranular twin line" in the 

martensite transformation process, it does not related to the mechanical properties of the material, 

mainly decided by nucleation and nucleus growth work. These twins all are "transformation twins". 

From beginning to end, did not occur the heterogeneous plastic shear of martensite in the process of 

phase transition, and generate the twinning by means of martensite's plastic deformation. It can be 

seen from here that martensite possessing complete internal twins does not mean that the critical 

resolved shear stress of slipping exceeds that of twinning. From the above discussion, it can see clearly 

that "martensite shear theory" does not conform to the actual martensite transformation, that the plate-

like shape of martensite and internal twins were regarded as a cause of martensite high brittleness is 

purely the prejudice of "martensite shear said". 

4. Conclusions 

All martensite have internal twins, they are formed in the initial stage of the martensite nucleation, and 

belong to transformation twins. With increasing the content of carbon and alloy elements, internal 

twinsdensity enhances. When containing 0.19%C, 0.38%C, 0.86%C, 1.12%C, the average distance of 

internal twins were 0.227, 0.128, 0.034 and 0.011 μ m respectively. 

"Transformation twins" in common steel is usually "complete twin". Every martensite unit in 

packet martensite has a same orientation of twinning plane, namely forming "transgranular twin line". 

Complete twin and transgranular twin line all are to generate in the martensite transformation process 

in order to reduce the nucleation and nucleus growth work, have nothing to do with heterogeneous 

plastic shear of martensite. 

When the thin foil specimen was carried by twin-jet erosion, due to uneven corrosion, it often 

changes the morphology of diffraction contrast image under TEM, and leads to one's beyond 

recognition, and complete twin often turns into partial twin. 
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