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Abstract. TA15 (Ti-6.5Al-2Zr-1Mo-1V) and BTi-6431S (Ti-6.5Al-3Sn-3Zr-3Mo-3Nb-1W-

0.2Si) titanium alloy plates were welded through gas tungsten arc welding (TIG) and different 

ultrasonic impact treatment (UIT) were conducted on the weldment. The effects of ultrasonic 

impact treatment (UIT) on the microstructure and residual stress distribution and mechanical 

properties for the welding joint were investigated through optical microscopy, X-ray 

diffraction (XRD), scanning electron microscopy (SEM) and tensile tests. After TIG welding, 

the structure of welding joint is composed of fusion zone (FZ), heat-affected zone (HAZ) and 

base metal. The FZ is widmannstatten structure with coarse β grains and a large number of 

acicular α due to the fast cooling rate. The microstructure in the HAZ shows a gradual change 

because of the presence of temperature gradients during welding. The residual stress after TIG 

is mainly tensile stress and the maximum longitudinal stress appears in the centerline of 

welding joint. The UIT process shows dramatic influence on residual stress distribution. After 

employing UIT twice, the residual stress near the welding joint shows a uniform distribution 

and the maximum tensile stress changes to compressive stress. However, the tensile properties 

at room temperature almost remain unchanged after UIT. 

1. Introduction 

High-temperature titanium alloys are widely used in the aerospace industry owing to its excellent 

combination of mechanical and physical properties, such as low density, excellent high-temperature 

mechanical properties, good corrosion to resistance and excellent weldability [1-2]. In order to reduce 

the structure weight and improve the overall performance, welded structure becomes a preferred 

choice in the design and manufacture of aerospace. Titanium alloys can be joined by a variety of 

welding methods, such as gas tungsten arc welding (TIG), laser beam welding (LBW) and electron 

beam welding (EBW). TIG is a usually used method and has drawn more attention [3-4]. 

Sometimes, there are different performance requirements for the different parts of the same 

component; the weldments of similar material cannot satisfy the demand. Therefore, dissimilar metal 

alloys are welded to make full advantage of properties of each component material. However, the 

residual stress is generated due to the heterogeneous distribution of temperature formed during the 

welding process, which may have adverse impacts on mechanical properties of welding joints [5]. 

Many methods have been used to reduce the residual stress of welding parts, which are classified into 

heat treatment and mechanical methods. Compared with the traditional methods, ultrasonic impact 

treatment (UIT) can not only introduce compressive stress, but has advantages of easy operation, high 

working efficiency and low energy consumption [5-7].  
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TA15 titanium alloy (Ti-6.5Al-2Zr-1Mo-1V) is a kind of near-α titanium alloy with excellent 

thermal stability and welding performance and widely used in the welding parts of aerospace, engines 

and military industries [8]. BTi-6431S alloy (Ti-6.5Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si) is a novel α+β 

high-temperature titanium alloy, which can be applied at 700°C for short term [9-10]. In this study, 

TA15 and BTi-6431S titanium alloy plates were welded via TIG method and UIT was employed to 

reduce the residual stress of the welding joints. The effects of UIT processes on the distribution of 

residual stress were investigated through optical microscopy (OM) and X-ray diffraction (XRD) 

method, so as to provide experimental basis for UIT in dissimilar welded components. 

2. Experimental procedures 

BTi-6431Sand TA15 titanium alloy plates with dimensions of 250 mm×200 mm×3 mm where the 

rolling direction is parallel to the length direction were used for this study. Figure 1 shows the original 

microstructures of BTi-6431S and TA15 titanium alloys observed by optical microscope. The 

microstructure of BTi-6431S alloy is composed of lamellar primary α phase (αp) and transformed β (βt) 

structure, and that of TA15 alloy is composed of equiaxed αp phase and a small amount of β phase. 

The welding direction was parallel to the rolling direction. The TIG parameters were shown in Table 1. 

Different UIT methods were conducted with a HTUIT-20 ultrasonic impactdevice in the welding 

joints on welding toe and the parameters of UIT process were shown in Table 2. 

 

 

Figure 1. OM microstructure of BTi-6431S(a) and TA15(b) titanium alloys 

 

Table 1. The parameters of TIG process 

Groove angle, ° Current, mA Voltage, kV Welding speed, mm/s 

60 130 15 2 

 

Table 2. The parameters of ultrasonic impact treatment process 

Frequency, kHz Actual Frequency, kHz Amplitude, μm Speed, mm/min Times Current, A 

20 19 20 200 1~3 1.2~1.5 

 

The specimens for microstructural observation were cut through electro-discharge machine and 

conventional titanium metallographic procedures were subsequently applied. The specimens were 

etched in the solution of HF: HNO3: H2O=1: 3: 7. The microstructures of base metals and welding 

joint were observed using the Axiovert200 MAT Zeiss optical microscope. The residual stresses of the 

welding joints were tested before and after UIT by X-ray diffraction (XRD) method on an X-350 

instrument (Cu target, 25kV, 8mA). The diffraction crystal face is (213) and stress constant is -

277MPa per degree. Taking the center of the welding joint as the symmetry axis, the measuring point 

is set at each 4mm from base metal to the welding line. The tensile tests were performed on Instron 

5582 machine at room temperature and three specimens were tested to get an average. The fracture 

morphologies were observed through JSM-7001F scanning electron microscope (SEM). 
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3. Results and discussion 

3.1. Microstructure 

The welding seam by TIG method is in bright sliver colour and shows little deformation. 

Microstructures of the welding joint are shown in Figure 2 and Figure 3. The surface of the joint was 

slightly convex with the width of front bead about 16mm. The microstructure of the welding joint is 

obviously divided into fusion zone (FZ), heat-affected zone (HAZ) and base metal zone. After TIG, a 

significant change occurs in the (FZ and HAZ. The microstructure is related to the cooling rate. The 

microstructure of FZ is characterized as widmannstatten structure which consists of coarse β grains 

and a large number of acicular α (shown in Figure 3(a)) due to the fast cooling rate. The 

microstructure in the HAZ shows a gradual change due to the presence of temperature gradients 

during welding. HAZ near fusion zone (shown in Figure 3(b, c)) consists of widmannstatten structure 

because the temperature in this area is also higher than β transus temperature, while the size of β 

grains is much smaller than that in FZ. The microstructure of the HAZ near base metal (shown in 

Figure 3(d, e)) is similar to the parent alloy, that is, the microstructure near TA15 alloy is composed of 

coarse equiaxed α phases and that of BTi-6431S alloy is coarse lamellar α phases.  

 

 

Figure 2. The profile of butt jointby TIGwelding 
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Figure 3.  Microstructure of the TIG welding joint: (a) welding centerline, (b) HAZ near FZ in TA15 

alloy side, (c) HAZ near FZ in BTi-6431S alloy side, (d) HAZ near base metal in TA15 alloy side, (e) 

HAZ near base metal in BTi-6431S alloy side 

3.2. Residual stress distribution 

Figure 4 shows the residual stress distribution of the welding joint along transverse direction (σx) and 

longitudinal direction (σy), respectively. It can be found that before UIT the residual stresses along 

both directions are distributed symmetrically along the center line of the welding joint.The value of 

residual stress along transverse direction is much smaller than that along longitudinal direction. It is 

noted that the residual stresses in the FZ and HAZ are tensile stress and the values of σy range from 

544 MPa to 616 MPa. The maximum residual stress exists in the centerline and is almost 60% of the 

yield stress of the base metal. This isresulted from the heat-expansion and cold-contraction of 

weldment. 

 

 

Figure 4. Distribution of residual stress of the TA15/BTi-6431S TIG welding joint: (a) transverse 

direction (σx), (b) longitudinal direction (σy) 

 

Figure 5 shows the longitudinal residual stress (σy) distribution of the welding joint after different 

UIT processes. The number of impact has significantly influence on the distribution of residual stress. 

After UIT for one time, the residual stress of the welding joint is relieved slightly and the maximum 

value decreases from 616 MPa to 531 MPa, but still remains tensile stress. As the number of ultrasonic 

impact increases to two, the residual stress changes from tensile to compressive, and the maximum 

compressive residual stress reach to -100 MPa. Comparing with stress-relief annealing, UIT not only 

decreases the residual stress, but introduces compressive residual stress which is benefit for the fatigue 

properties of welding joint [11].  

(d) (e) 

(a) (b) 
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Figure 5. Longitudinal residual stress (σy) of welding joint after UIT with different impact numbers 

3.3. Mechanical properties 

The tensile properties of the TIG weldment through different UIT process are studied at room 

temperature, and the results are listed in Table 3, including yield strength, ultimate tensile strength and 

elongation. After UIT, the tensile properties remain unchanged. Figure 6 shows the SEM images of 

fracture morphologies for TA15/BTi-6431S alloys TIG weldment after tensile tests. It can be found 

that shallow dimple fracture is predominant, and some secondary cracks are visible. By ultrasonic 

impact treatment, the fracture mode is also not changed.  

 

Table 3. Room-temperature tensile properties of TA15/BTi-6431S alloy weldment after different UIT 

UIT process Ultimate tensile strength, MPa Yield strength, MPa Elongation, % 

Before UIT 1011 912 6 

UIT-1 1026 887 4.5 

UIT-2 1059 914 5 

UIT-3 1055 904 5.5 

 

 
(a) before UIT, (b) after UIT 

Figure 6. Fracture morphologies of TA15/BTi-6431S alloys TIG weldment after tensile tests. 
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The variation of mechanical properties is obviously different from residual stress after different 

UIT process. Ultrasonic impact is a mechanical strengthening method on the surface. As the strength 

of the titanium alloy is high, plastic deformation is not easy to produce. The depth of the influence 

layer after ultrasonic impact is only micrometer, which is very shallow compared to the thickness of 

the plate. It is not enough to change the tensile mechanical properties of the welded joint. In order to 

further improve the mechanical properties of joints, it is necessary to amplify the depth of ultrasonic 

impact layer, such as increase the impact number or working current. 

4. Conclusions  

(1)The microstructure of TIG welding joint of TA15/BTi-6431S dissimilar alloys is compose of FZ, 

HAZ and base metal due to the presence of temperature gradients during welding. The microstructure 

in FZ with fast cooling rate is widmannstatten structure, consisting of coarse β grains and a large 

number of acicular α. The microsture of HAZ near FZ is also widmannstatten structure with smaller β 

grains than that in FZ 

(2) The number of impact treatment has great influence on residual stress distribution. After 

employing UIT twice, the residual stress near the welding joint shows a uniform distribution and 

transforms from tensile stress to compressive stress.  

(3) The tensile properties at room temperature and fracture characteristics almost remain 

unchanged through ultrasonic impact treatment. This is because that the depth of the influence layer 

after ultrasonic impact is too shallow compared to the thickness of the welding joint. 
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