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Abstract. The fracture problem of collinear periodic cracks in an infinite transversely isotropic 
piezoelectric plate subjected to the anti-plane shear stress and the in-plane electric load at 
infinity is studied. Using the complex function method, the mechanical problem is turned into 
the boundary value problem of partial differential equations. The solutions of the boundary 
value problem of partial differential equation are obtained by undetermined coefficients 
method. Then, considering the periodicity of cracks, the stress intensity factors and the electric 
displacement intensity factors for mode III near the right tip of every crack are defined, the 
expressions of the stress fields, electric displacement fields, displacement fields, electric 
potential fields and the mechanical strain energy release rate around the crack tip are obtained 
with the assumption that the surface of the crack is electrically impermeable. Finally, 
interference effect and scale effect of collinear periodic cracks and the mechanical strain 
energy release rate are discussed by analysis of examples. It can be seen interference effect of 
collinear periodic cracks is strong when 2/1 << ab . The scale effect of the singularity of the 
stress intensity factors and electric displacement intensity factors in crack tip is obvious. Stress 
always promotes extension of the cracks, the mechanical strain energy release rate is related to 
the size and direction of the electric field, the positive electric field can promote the expansion 
of the cracks, the negative electric field can inhibit the extension of cracks. 

1. Introduction 
Piezoelectric material is widely used in making transducer, sensor and the brakes and other electronic 
devices. But piezoelectric material has great brittleness; it inevitably appears defects such as cracks, 
inclusions, holes. It often leads to failure and even destroy, which affects the performance and 
reliability of the smart structure. So the fracture problem of piezoelectric materials has very important 
significance. Fracture mechanics analysis of piezoelectric material has drawn many researchers' 
attention. Erdogan and Pak [1-3] studied anti-plane elasticity problem of periodic cracks in the 
functionally graded coated on the surface. Stress intensity factors for mode-III were obtained. By the 
Stroh formalism and conformal mapping method, Hu, Choi and Gao [4-6] studied fracture problems of 
anisotropic material with collinear periodic cracks. Hao and Zhou [7- 8] discussed the fracture problem 
of two symmetrical parallel cracks in piezoelectric material with the assumption that the surface of the 
cracks was electrically permeable. Chen, Cui and Wang [9-11] discussed, respectively, the anti-plane 
problem of single crack and periodic cracks in elasticity functionally graded materials. Shi, Guo and 
Zhao [12-14] considered the anti-plane problems of collinear periodic cracks in the six quasicrystals. 
The problem can be turned into Riemann-Hilbert problem of periodic analytic function to solve. The 
closed-form solutions of anti-plane problem were obtained. A strip-electro-mechanical model is 
proposed for two semi-permeable collinear cracks, symmetrically situated and transversely oriented in 
a poled piezoelectric strip15-16. The remote boundary of the strip is subjected to mode-III stress and in-
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plane electric-displacement. By using the integral transform technique, Zhou and Shi [16-17] studies 
two collinear permeable anti-plane shear or mode-III cracks of equal length lying at the mid-plane of a 
one-dimensional hexagonal piezoelectric quasicrystal strip. Currently, there is little reference about 
collinear parallel cracks in piezoelectric material plate which were studied by using the complex 
function theory and undetermined coefficients method. 

In this paper, the fracture problem of collinear periodic cracks in an infinite transversely isotropic 
piezoelectric plate under the anti-plane shear stress and the in-plane electric load at infinity is studied. 
By introducing proper Wester gaard’s stress function and electric displacement function, the solutions 
of the boundary value problem of partial differential equation are obtained by undetermined 
coefficients method and the complex function method. The expressions of the stress fields, electric 
displacement fields, displacement fields, electric potential fields and the mechanical strain energy 
release rate around the crack tip are obtained with the assumption that the surfaces of the cracks were 
electrically impermeable. Finally, interference effect and scale effect of collinear periodic cracks and 
the mechanical strain energy release rate are discussed by analysis of examples.  

2. Mechanical model 
Consider an infinite transversely isotropic piezoelectric plate containing collinear periodic crack of 
length a2  as is shown in Figure 1. The distance between cracks is b2 . The plate is subjected to the 
anti-plane shear stressσ and the in-plane electric load D at infinity. In a fixed rectangular coordinate 
system ( )3,2,1=jx j , 21oxx plane is transversely isotropic plane, 3x axis is perpendicular to the 21oxx
plane. 

 
Figure 1. The anti-plane problem of piezoelectric plate with collinear periodic cracks 

 
Here we only consider the general two-dimensional piezoelectric boundary value problem. The 

constitutive equations can be obtained as follows: 
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where ( )3 3 1 2,u u x x=  is the out-of-plane displacement, φ  is the electric potential. 
In the absence of body forces and free charge, the static equilibrium equation and Maxwell 

equation under static electricity are as follows: 
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Substituting (1) into (2), the equilibrium equations of piezoelectric material are as follows: 
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=∇−∇ φεue                                (3) 

where 2∇  is the two-dimensional Laplace operator in the variables 1x  and 2x . 
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For general piezoelectric material, the elastic constant 44c , piezoelectric constant 15e  and dielectric 
constant 11ε  satisfy the relation: 02

151144 ≠+ ec ε . So the equilibrium equation (3) is simplified into 
two independent harmonic equations as follows: 

2 2
3 0, 0u ϕ∇ = ∇ = ,                                                       (4) 

Assuming that the permittivity of air was far less than that of piezoelectric material, the electric 
field inside cracks can be ignored. So the conduction boundary conditions are adopted as follows: 

2 :x →∞ 32 2, D Dσ σ= =                                                                (5) 

2 10, 2 2 :x nb a x nb a= − < < + 032 =σ ,  022 == −+ DD                                    (6) 

Therefore, the anti-plane problem of an infinite transversely isotropic piezoelectric plate can be 
reduced to solve the solutions of the boundary value problem of partial differential equations (4 to 6). 

3. Stress function and electric displacement function 
Harmonic equations (4) have real analytical solution, which is based on the knowledge of complex 
function theory. We may assume: 

( ) ( )11113 ImRe UbUau += , ( ) ( )2222 ImRe UbUa +=φ                                      (7) 

where ,j ja b ( 1,2j = )are the real undetermined coefficients, 1U , 2U are the stress function and electric 
potential function respectively, and 
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Substituting (7) into constitutive equations (1), the elastic stresses and electric displacements can be 
expressed by using 1U  and 2U  . 

Noticing the anti-plane shear stressσ and the in-plane electric load D , the stress function and 
electric potential function are selected as follows 
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Substituting (8) into the boundary condition (6), we can obtaina system of non-homogeneous linear 
equations in 4 unknowns about coefficients ja , jb ( 1,2j = ). 
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Solving non-homogeneous linear equations (9), the unique solutions of equations can be derived: 
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4. Intensity factors  
Considering the periodicity of cracks, the stress intensity factor and the electric displacement intensity 
factor of mode III near the right tip of every crack is defined as follows: 
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Substituting (8) into (11), we can obtain 
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where ( ) ( )2 / tan / 2Y b a a bπ π=    is called the shape factor. 
′σ

ⅢK and
′DKⅢ are, respectively, stress 

intensity factor and electric displacement intensity factor in an infinite transversely isotropic 
piezoelectric plate with a centre crack under the anti-plane shear stress and the in-plane electric load at 
infinity. Then aK πσσ =

′
Ⅲ

, aDK D π=
′

Ⅲ
. When 1=a , the variation curves ofY , σ

ⅢK , DKⅢ with b are 
given as shown in Figure 2. It can be seen that from Figure 2shape factorY , σ

ⅢK , DKⅢ decrease with the 
increase of the distance between cracks. When the cracks spacing is greater than 2, the shape factorY , 

σ
ⅢK , DKⅢ  reach a steady state. 
Near the cracks tip, from the equations (11), it can be seen that 
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Figure 2. The variation curves ofY , σ

ⅢK , DKⅢ
 with the cracks spacing b 
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Figure 3. Interaction of collinear periodic cracks 

 
So, the stress field and electric displacement field near the mode- III collinear periodic cracks 
( nbaz 21 +→ ) in an infinite transversely isotropic piezoelectric plate can be written as follows: 
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From constitutive equations (1), letting 1=k , we can obtain as follow: 
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Integrating over x1 about Eq.(18), the displacement can be obtained as follow: 
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Integrating over x1about Eq.(19), the electric potential can be also obtained as follow: 
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5. The mechanical strain energy release rate 
Let’s sKⅢ  denotes the strain intensity factor at the mode-III collinear periodic cracks tip, sKⅢ can be 
written as follow: 
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(22) 

Substituting (12) into (22), respectively, the strain intensity factor at the mode-Ⅲ collinear periodic 
crack-tip is obtained as follow: 
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The mechanical strain energy release rate can be expressed as: 
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Substituting (12) and (23) into (24), the mechanical strain energy release rate at the mode-Ⅲ 
collinear crack-tip is obtained as follow: 
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6. Numerical results 
In this section, we study interference effect and scale effect between cracks, and mechanical strain 
energy release rate of collinear periodic cracks in an infinite piezoelectric plate. We choose the 
piezoelectric ceramics PZT-5H as the experimental materials, which parameters are as follows: 

10 2 2 10 2
44 15 113.53 10 / , 17.0 / , 151 10 / , 5.0 /crc N m e C m C Vm G J mε −= × = = × = , 

where Gr is critical mechanical strain energy release rate.  

 
Figure 4. Scale effect of collinear periodic cracks 
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Figure 5. The variation of crm GG / with ab /  

 
In order to study the interference effect between the cracks, the variation curves of ′σσ

ⅢⅢ KK / with 

ab /  is given as shown in figure 3. When 2/1 << ab , ′σσ
ⅢⅢ KK / decreases obviously with the increase 

of ab / , thus it can be seen that interference of collinear periodic cracks is strong. When 2/ >ab ,
′σσ

ⅢⅢ KK /  remains the same with the increase of ab / , so the interference of collinear periodic cracks 
becomes smaller. 

The scale effect of collinear periodic cracks with the assumption that the surfaces of the cracks are 
electrically impermeable is calculated as shown in figure 4. Form figure 4, we take 10 =a  as reference 
length of cracks. It can be seen from figure 4, σσ /ⅢK increases with the increase of 0/ aa , at the same 
time, when 0/ aa remains constant, σσ /ⅢK  also increases with the increase of ba / .From (12), stress 
intensity factor and electric displacement intensity factor of collinear periodic cracks under electrically 
impermeable crack surface conditions have the same rules. The result shows that the singularity of the 
stress intensity factor and electric displacement intensity factor in cracks tip have obvious the scale 
effect. 

Figure 5 shows the mechanical strain energy release rate changes along with ab / under different 
mechanical load and electrical load. From figure 5, it can be seen mechanical strain energy release rate 
decreases with the increase of ab / .When 4/1 << ab , the change of mechanical strain energy 
release rate with the ratio ab /  is larger, when 4/ >ab , it has less effect on the mechanical strain 
energy release rate. From figure 5, it also shows that mechanical strain energy release rate increases 
with the increase of stress with the same in-plane electric field; Mechanical strain energy release rate 
is not only dependent on the size of the electric load, but also associated with the direction of the 
electric load. It increases with the increase of positive electric field. When the positive electric field 
can be changed to negative electric fields with the same size, the mechanical strain energy release rate 
decreased. So positive electric field can promote the expansion of the cracks, the negative electric field 
can inhibit extension of the cracks. 

7. Conclusions 
By using the complex variable function method and undetermined coefficients method, the anti-plane 
problem of the collinear periodic cracks in an infinite transversely isotropic piezoelectric plate is 
studied in this paper. The analytic solutions of the stress, displacement, electric displacement, electric 
potential and the mechanical strain energy release rate at the cracks tip are obtained. The 
results indicated that: (1) When 2/1 << ab , interference of collinear periodic cracks is strong; (2) The 
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singularity of the stress intensity factor and electric displacement intensity factor in cracks tip have 
obvious the scale effect; (3) Stress always promotes extension of the cracks; (4) The mechanical strain 
energy release rate is related to the size and direction of the electric field, the positive electric field can 
promote the expansion of the cracks, the negative electric field can inhibit the extension of cracks. 
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