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Abstract. The paper focuses on determining the frost resistance of concrete using selected 
destructive and non-destructive test methods. The experiment was performed with four specially 
made concretes, which differed only in the origin of sand and coarse aggregate. The primary 
outcome of the experiment are the differences in frost resistance as measured by different 
methods. In addition, it briefly describes the influence that the choice of aggregate has on 
the frost resistance of concrete. 

1.  Introduction 
In recent years, new trends have been introduced into the design of reinforced concrete structures. 
Current concepts of structures and especially materials from which the structures are constructed place 
emphasis on properties related to environmental impact, specifically, durability, reliability and 
sustainability [1]. Durability is broadly used as a general term meaning the resistance of concrete to 
harsh environment. The character, intensity and mechanism of each influence may, however, vary 
considerably, making the concept of concrete durability somewhat vague. Moreover, no available 
method can be used to determine the durability of concrete in general terms [2]. The degradation of 
concrete in a structure is influenced by various factors such as carbonation, mechanical wear, cracks 
formed by (for example) inappropriate curing, etc. 

Frost resistance is thus another important factor that needs to be considered during the design of 
concrete structures. The effects of frost are one of the most frequently observed forms of damage to 
the surface layer of concrete as well as its internal structure. When concrete is dry during exposure to 
frost, the structure does not usually sustain significant damage. However, if the structure or its part is in 
contact with water (road panels, railway sleepers, water reservoirs, etc.), the concrete absorbs it into its 
pore structure. If the water freezes, there is a risk of cracking and other defects caused by the expansion 
of ice in the pore structure. Water located in the capillary pores of concrete begins to freeze at 
approximately -0.5°C. The volume of the ice thus produced is larger by approximately 9% compared to 
the original water. This generates high internal strain in the concrete and, as a result, causes damage to 
its internal structure, which irreversibly leads to the reduction of basic material properties [3]. 

Frost resistance of concrete is influenced by many factors, most of which are related to its 
composition. The most important factor is the distribution and size of air pores in the concrete structure 
[4]. Air-entraining agents are the most reliable means of increasing the resistance of concrete against 
frost, because they form a system of closed spherical air voids inside the concrete. These provide space 
for the ice to expand, thus reducing the risk of damage to the internal structure of the concrete [3]. 
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Another important aspect of the frost resistance of concrete is the amount, quality, type and grain size 
of the aggregate used [5]. 

Although standards do not prescribe a method for determining the frost resistance of concrete in 
structures, this property can be evaluated in several ways in laboratories using test specimens. These 
testing procedures are, for example, those described in ASTM C 666-03 [6], GB / T 50082-2009 [7], 
BS 5075-2 [8], ČSN 73 1322 [9] or ČSN 73 1380 [10]. The principle is always to monitor the decrease 
in the value of a certain property of concrete after a freeze-thaw cycle (F-T cycle) in the presence of 
water. According to [6], the most appropriate means of determining the frost resistance of concrete is to 
observe the changes in its dynamic modulus of elasticity after F-T cycles, as this method can detect 
initial defects in the internal structure of concrete much earlier than during the observation of 
the decrease in other properties, particularly strength. In principle, this involves determining 
the percentage of the value of the modulus determined after a given number of F-T cycles and 
the original value of the modulus of elasticity determined before the cyclic freezing and thawing. 
The result is the value of the relative dynamic modulus of elasticity (RDM). 

2.  Experiment 
The experiment aimed primarily to compare the suitability of each of the available methods for 
measuring the frost resistance of concrete. A secondary aim was to determine the influence of aggregate 
on the concrete’s frost resistance. 

2.1.  Material and test specimens 
Four types of concrete with designations D, E, F and G were produced for the purpose of the experiment. 
These concretes (their composition is shown in Table 1) differed mainly in the type and origin of 
aggregate (sand as well as coarse aggregate). The other components were always the same. 

 
Table 1. Composition of the concrete used in the experiment. 

Component 
kg / 1 m3 of fresh concrete 

Concrete D Concrete E Concrete F Concrete G 
CEM II/B-S 32.5 R (Mokrá) 400 400 400 400 
Water 185 185 185 185 
Sand 0-4 mm (Bratčice) 760 - 760 - 
Sand 0-4 mm (Tovačov) - 745 - 745 
Aggregate 4-8 mm (Luleč) 135 135 - - 
Aggregate 4-8 mm (Tovačov) - - 135 135 
Aggregate 8-16 mm (Luleč) 460 460 - - 
Aggregate 8-16 mm (Tovačov) - - 450 450 
Aggregate 11-22 mm (Luleč) 345 345 - - 
Aggregate 11-22 mm (Tovačov) - - 335 335 
Plasticiser (Sika ViscoCrete-4035) 2.00 1.80 1.80 1.60 
Air-entraining agent (Sika LPSA 94) 0.25 0.25 0.25 0.25 

 
Two types of sand and two types of coarse aggregate were used. Both sands 0/4 mm consisted of 

naturally mined aggregate with one from the Bratčice site and the other from Tovačov. One type of 
the coarse aggregate (consisting of grading 4/8, 8/16 and 11/22) was a naturally crushed aggregate from 
Luleč quarry (petrographic name of the raw material: greywacke) and the second type of the coarse 
aggregate (of the same grain sizes) was a naturally mined aggregate from Tovačov (gravel). 
The composition of the concrete was designed to combine both sands with both coarse aggregates. In 
order to achieve similar consistency of each concrete, plasticiser was added with minor variations in 
amount. The slump test values ranged within (200 ± 20) mm for all the concretes, see Table 2. 
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Table 2. Properties of each concrete in the fresh (FC) and hardened (HC) state. 

 Concrete 
Property D E F G 
Slump test (FC) [mm] 200 220 180 220 
Air content (FC) [%] 5.5 5.5 6.5 6.0 
Density (FC) [kg/m3] 2230 2250 2190 2220 
Compressive strength after 28 days 
(cube, HC) [N/mm2] 51.4 54.6 44.9 49.9 
Density (HC) [kg/m3] 2270 2270 2230 2270 
Flexural strength before F-T cycles 
(prism, HC) [N/mm2] 5.1 6.1 4.2 4.5 
Tensile splitting strength before F-T cycles 
(fragment, HC) [N/mm2] 4.60 5.25 4.05 4.20 

 
Six test specimens were made from each concrete with the nominal dimensions of 100 × 100 

× 400 mm. The test specimens aged for 24 hours in special plastic (Hakorit) moulds covered with a PE 
foil. They were then removed from the moulds and stored in an environment with the air temperature of 
20 ± 2°C and humidity of at least 95%. At the age of 25 days, the specimens were submerged for three 
days in water with the temperature of 20 ± 2°C. 

2.2.  Testing methods 
At the age of 28 days, the test prisms were removed from the water bath and subjected to measurements 
of the dynamic modulus of elasticity using the ultrasonic (US) pulse velocity test and the resonance 
method. The ultrasonic pulse transit time was the first to be measured. The measurements were always 
carried out along three longitudinal lines evenly spaced over the height of the test specimen using 
a Pundit PL-200 ultrasonic device. The transit times thus recorded were used to calculate first 
the propagation of the US wave through the concrete and then the dynamic modulus of elasticity Ecu 
according to ČSN 73 1371 [11]. Using a Handyscope HS4 oscilloscope (with an acoustic emission 
sensor and software, which works on the basis of a fast Fourier transform), the natural frequencies of 
longitudinal, flexural, and torsional vibrations were then determined. These values were then used to 
calculate the dynamic modulus of elasticity EcrL (from longitudinal vibrations) and Ecrf (from flexural 
vibrations) in accordance with the standard ČSN 73 1372 [12]. More information on the pulse velocity 
test and the resonance method can be found for example in [13]. 

Based on the results of these measurements, the test specimens of each concrete type were divided 
into two groups of three, so that the average value of the dynamic modulus of elasticity was 
approximately the same for both groups. One group of specimens was used for reference. These 
specimens were first used for the determination of the flexural strength fcf according to EN 12390-5 [14] 
and the tensile splitting strength fct measured on their fragments according to the standard EN 12390-6 
[15]. The second group of test specimens was subjected to cyclic freezing in accordance with 
the standard [9]. One hundred and fifty freeze-thaw cycles were conducted with the test specimens and 
the value of the dynamic modulus of elasticity was determined after each 25th cycle. Based on 
the changes in its average value, the relative dynamic modulus of elasticity (RDM) was determined. It 
represents the ratio between the value of the modulus of elasticity after F-T cycles and the value of 
the modulus of elasticity before the test of frost resistance. RDM (U) stands for the relative modulus of 
elasticity determined using the US pulse velocity test, RDM (FL) was measured using the resonance 
method of the natural frequency of the longitudinal vibrations and RDM (FF) was calculated from 
the natural frequency of flexural vibrations. After 150 freeze-thaw cycles, the test specimens were 
subjected to the flexural strength test and the fragments to the tensile splitting strength test. The strength 
parameters thus determined were then used to calculate the ratio of their values before and after 
the freeze-thaw cycles (fct ratio and fcf ratio). 
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3.  Results and discussion 
Figure 1 presents the RDM (U) results for all four types of concrete (D, E, F, and G) in relation to 
the number of F-T cycles performed. It is in fact a record of the decrease of the dynamic modulus of 
elasticity Ecu during freezing and thawing. Figures 2 and 3 show the relative dynamic moduli of all 
the concrete types determined using the resonance method, again in relation to the number of freeze-
thaw cycles. 
 

 

Figure 1. Progress of RDM (U) for concrete D, E, F and G in relation to the number of F-T cycles. 
 
Table 3 lists the ratios of all the moduli of elasticity and of both strength parameters determined 

before and after 150 freeze-thaw cycles. The higher the value of this ratio, the higher the resistance of 
the concrete. 

The measurement results show that the choice of aggregate has a major effect on the frost resistance 
of concrete. However, it is not clear which of the aggregates is the best in this respect. Concrete E (made 
with Tovačov sand and coarse aggregate from Luleč) reached the highest RDM values, while the highest 
strength was achieved by concrete F (with Bratčice sand and Tovačov coarse aggregate). The worst 
results, both in destructive and non-destructive tests, were determined for concrete D (with Bratčice 
sand and Luleč coarse aggregate). 

What is more interesting and more important is the comparison of the different testing procedures 
used for the determination of frost resistance of the concrete. The harshest criterion is the decrease in 
flexural strength of concrete (the ratio between values before and after F-T cycles), which applies to all 
four concretes. On the other hand, the ultrasonic pulse velocity test seems to be the least sensitive method 
for assessing the degree of internal damage to concrete after F-T cycles. It can also be stated that all 
three observed RDM exhibit a similar trend, while measurement by the resonance method using 
the natural longitudinal and transverse vibration frequency is almost identical. Thus, when using 
the resonance method, it could be sufficient to assess frost resistance only on the basis of EcrL 
(the measurement of the natural frequency of longitudinal vibration is not dependent on the dimensional 
accuracy of the specimen’s cross-section). Yet, it is still advisable to measure the natural frequencies of 
all types of vibration and calculate the dynamic Poisson’s ratio with them. This can be useful e.g. for 
calculating the dynamic modulus of elasticity Ecu determined by the ultrasonic pulse velocity test. 
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Figure 2. Progress of RDM (FL) for concrete D, E, F and G in relation to the number of F-T cycles. 
 

 

Figure 3. Progress of RDM (FF) for concrete D, E, F and G in relation to the number of F-T cycles. 
 

Table 3. Results of RDM and ratios fct and fcf after 150 F-T cycles (in percent). 

Parameter 
Concrete 

D E F G 
RDM (U) 56.0 86.1 84.1 73.7 
RDM (FL) 51.8 88.9 82.4 71.0 
RDM (FF) 50.4 87.6 80.9 66.7 
fct ratio 55.8 75.2 78.9 75.8 
fcf ratio 42.6 66.5 72.5 59.9 
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4.  Conclusion 
The experiment results show that RDM values measured non-destructively during frost resistance 
testing correspond more to a decrease in tensile splitting strength than to loss of flexural strength. 
A crucial advantage of non-destructive test methods in terms of assessing frost resistance is 
the possibility to observe the progress of internal damage sustained by the specimens throughout 
the duration of the test. Destructive tests may give information about this damage only when using 
a much higher number of specimens, and even so, the results will be affected by the fact that every 
testing session will be performed with a different (new) set of specimens. The loss of flexural strength 
compared to RDM or tensile splitting strength is more severe and in terms of assessing concrete for frost 
resistance also sets a much stricter standard for failure. 
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