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 Abstract 
 
 The paper presented is a solution of wave force, using small amplitude, linear wave theory on 
 two-dimensional inclined submerged rectangular thin plates. The solution method is confined 
 in a finite domain, which contains both the region of different depth of water and the plate. In 
 this paper, analytical solution is derived and the result is validated with numerical results. 
 Simpson's 1/3 rule is used here for the validation. The variations of horizontal and vertical 
 wave forces on the plate with respect to the wave amplitudes are obtained in the intermediate 
 depth of water and at a different plate angle.  It is observed that the wave forces on the plate 
 are high at the free surface for d/L = 0.24 compare to the other relative depth. It is also 
 observed that the wave forces of the two types of plate are gradually converging with the 
 decreasing value of the relative depth. Laplace’s equation and boundary value problems are 
 solved in a finite domain, by the method of separation of variables and the small amplitude 
 linear wave theory. 
 
 Keywords: Linear wave; Laplace’s equation; Horizontal and Vertical Wave force; Inclined 
 Rectangular thin plate, Numerical result   
 
1. Introduction    
 
The interaction between linear wave and maritime structures of the inclined plane is of fundamental 
importance in coastal and ocean engineering. An attempt is made to design a new type wave energy 
converter, wherein kinetic energy obtainable from the ocean wave can be easily converted into the 
form of potential energy and subsequently can be used for any other purpose. A rectangular thin plate 
is considered, which acts as an energy absorber of wave energy converter and moves in the surge 
direction due to the action of an ocean wave. The plate is an element of the entire design of wave 
energy converter. The aim of this paper is a solution of ocean wave force on two-dimensional inclined 
submerged rectangular thin plate in intermediate depth of water and is the initial step for further 
research work in the development and design of wave energy converter. In the present paper, the force 
exerted on a submerged inclined rectangular thin plate due to the normally incident waves is studied 
by means of linear wave theory and the result is validated with the numerical results. Simpson's 1/3 
rule is used here for the validation. 
     Various types of studies on the wave force were carried out at different time by many authors on 
different types of submerged structures, like vertical barrier of different geometrical shapes, etc. 
Hanssen and Torum [1] (1999) experimentally studied the breaking wave forces on tripod concrete 
structures on shoal using a Morison’s equation. The main purpose of their study was to investigate 
both horizontal and vertical forces as well as overturning moments due to wave acting on the tripod. 
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     Meylan [2] (2001) presented a variational equation for the wave force on floating thin plates in his 
article ‘‘A variational equation for the wave forcing of floating thin plates’’. He had used free surface 
Green’s function for the solution. Solutions of the variational equation were presented for some 
simple thin geometric plates using polynomial-based functions. Maiti and Sen [3] (1999) investigated 
a numerical time-simulation algorithm for analyzing highly nonlinear solitary waves interacting with 
plane gentle and steep slopes, employing mixed Eulerian–Lagrangian method and also found out the 
pressures and forces on the inclined wall by Bernoulli’s equation. 
     Sundaravadivelu et al. [4] (1997) experimentally investigated the measurement of wave force and 
moments on an intake well due to regular wave using Linear Diffraction Theory. 
     Tsai and Jeng [5] (1990) studied the forces on vertical walls due to obliquely incident waves 
employing Fourier Series. For the calculation of the short crested wave system, Prabhakar and Sundar 
[6] (2001) numerically computed the variations of pressure on vertical walls at a constant depth of 
water by the Fourier Series approximation method and their results obtained from this method were 
compared with the experimental results conducted by Nagai [7] (1969). Prabhakar and Sundar also 
compared their results with the results of Fenton [8] (1985) for the pressure curves at still water level 
and sea bed. Mallayachari and Sundar [9] (1994) investigated the wave pressure exerted on vertical 
walls due to regular and random waves, using Fourier Series approach. 
     Most of the other authors investigated the breaking wave forces exerted on a vertical circular 
cylinder (e.g., Sawaragi and Nochino, [10] 1984; Apelt and Piorewiez, [11] 1987; Hovden and 
Torum, [12] 1991). Neelamani et al. [13] (2002) experimentally investigated wave forces on a 
seawater intake structure consisting of a perforated square caisson in a regular and random wave. 
     Deb Roy and Ghosh [14] (2006) investigated the wave force on vertical submerged circular thin 
plate in shallow water by the use of the Morison’s equation. The main purpose of their study was to 
investigate both horizontal and overturning moments due to regular wave acting on the plate. 
     Deb Roy and Ghosh [15] (2009) investigated the wave force on vertical submerged circular thin 
plate in shallow water due to oblique wave at different incident angle of the wave.  
     Deb Roy and Ranjan [16] (2015) theoretically investigated of wave force on vertical submerged 
rectangular thin plate at shallow water by the use of Fourier series technique.   
     Teo [17] (2003) theoretically investigated wave pressure on a vertical wall due to short-crested 
waves: fifth-order approximation. 
     Jeng [18] (2002) theoretically investigated wave kinematics of partial reflection from a vertical 
wall at different angle due to short-crested waves: third-order approximation. 
 
2. Mathematical Formulation 
     Consider a thin rectangular plate b of dimensions l1, l2 and l3 be inclined at an angle  (0    
π/2) with the horizontal and submerged in intermediate depth of water. Here l1 is the thickness of the 
plate, l2 is the width of the plate and l3 is the height of the plate. The system is idealized as a 2D 
Cartesian coordinate system and hence l2 is considered a unity. The plate is subjected to an incoming 
wave which is assumed to be travelling in the x-direction. The fluid domain occupies the region -d  z 
 0,  -∞  x  +∞ except for the thin plate in the fluid region. The plate b of negligible draft occupies 
the following positions, as shown in Fig. 1.  
     Consider incompressible inviscid irrotational flow without surface tension and with atmospheric 
pressure P = 0. The system is idealized as 2D and Cartesian co-ordinates are employed in the plane x–
z, vertical to the fluid surface. The z-axis is directed vertically upward from the still water level, which 
is measured positive upwards and the x-axis is measured along the direction of propagation of waves. 
The plane x–y is horizontal and coincides with the surface of the fluid when in equilibrium. The 
geometry is as depicted in Fig. 1. 
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Fig. 1. Definition sketch of the plate positions 

 
 
2.1 Governing equation 
 
     The governing equation and the boundary conditions are non-dimensionalize by the following non-
dimensional parameters. 
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where k=2π/L (L=wave length) and ω=2π/T (T=time period) are the wave number and wave 
frequency respectively. Dimensionless quantities are denoted by the symbol star (*) and will be 
omitted in the sections 2, 3 and 4 for the sake of simplicity.    
 

     Let ),( tx denote velocity potential and the governing equations for irrotational wave motion are 

given by the Laplace equation: 
 

          0,2  tx ,                                                                                                                               (2) 

 
2.2 Boundary conditions  
 
     To solve the governing Eq. (2) a set of boundary conditions is required. They are summarized as 
below: 
 
(a) The dynamic boundary condition at the free surface (DFSBC):  
 

         0t  ,                     at z = 0                                                                                               (3) 
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(b) The kinetic boundary condition at the free surface (KFSBC):  
  

        tz   ,                            at z = 0                                                                                               (4)  

 
(c) Combined free surface boundary condition (CFSBC): 
 

         ,02  ttz                     at    z = 0,                                                                                          (5)  

 
(d) Bottom boundary condition (BBC):  
 

         0z ,                               at z = -d                                                                                             (6) 

 
where η is the wave profile elevation, g is the acceleration due to gravity, t is the time, d is the depth 
of water.  
 
3. Method of Solutions 
 
Employing the Laplace Eq. (2) into the BBC and the linearized DFSBC, the desire velocity potential 
for small amplitude linear waves can be derived by the method of separation of variables (Ippen, [19] 
1966 or Sorensen, [20] 1978). A useful form of this velocity potential is,  
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Integrating the velocity potential into the linearized DFSBC and letting z=0 yields the equation for the 
wave surface profile,  
 

          tx  cos ,                                                                                                                             (8) 

 
The dispersion relation,  
 

         dtanh2  ,                                                                                                                               (9) 
 
4.   Pressure and force on the inclined plate  
 
Evaluation of pressure induced by the wave on the plate can be determined from Bernoulli’s equation:   
 

           22

2

1
zxtzP   ,                                                                                                    (10) 

 
    The Horizontal force Fx and the vertical force (Fz) per unit width of the plate can be determined by 
integrating the above expression over the wetted contour.  
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        
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Here ρ is the water density and nx and nz are the x-component and the z-component of the exterior unit 

normal vector n  on b. The plate is inclined at an angle  with respect to the horizontal, nx = sin and 

nz = cos (Maiti eta. el. 1999). Determination of the time derivative t  and velocities x  and z  are 

done by first order difference rules. In the configuration shown there is no variation of pressure in the 
y-direction, as the waves are assumed to be long crested and propagation in the x-direction. Refer to 
the Fig. 1 consider first the approximate wave induced pressure on the plate that is in the x-direction 
and z-direction located at 0  x  l3cos.  
 
5. Result and discussion   
 
The aim of this paper is to investigate the effect of ocean wave force by linear wave theory on 
inclined submerged rectangular thin plate as shown in Fig. 1. For each type results have been 
estimated up to six decimal places in order to achieve accuracy. The results have been discussed in 
intermediate depth of water (0.05  d/L  0.5). 
     To demonstrate the effects of the first-order wave on the plate, representative sets of analytical 
results with the numerical results for horizontal force (Fx) for the two types of vertically submerged 
rectangular thin plate in intermediate depth of water between the ranges 0.1  d/L  0.24 are shown in 
Table 1-2. It is observed from the Table 1-2 that analytical results are closely in agreement with the 
numerical results and their percentage errors are very less in each case. As shown in the Table 1-2 
wave forces on the plate are more of a relative depth of water (d/L = 0.24) comparable to the lower 
relative depth of water (d/L = 0.16, 0.12 and 0.10). From the Table 1 it is clear that, on a/d (= 0.033, 
0.075, 0.116) and d/L (= 0.24), the agreement of analytical results with the numerical results is less 
than equal to 3.3493% for type I (z/d = 0). This concludes that wave force on the plate is important at 
a relative depth of water (d/L = 0.24) compared to the other relative depth of water.  
     Fig. 2 shows the plot of the computed results of horizontal force (Fx) on the plate which increase 
with the dimensionless wave amplitude (a/d = 0.033 to 0.116) for various relative depths of water d/L 
= 0.24, 0.16, 0.12, 0.10. It is observed that the horizontal force on the plate is very high for higher 
relative depth of water (d/L = 0.24) compared to the lower relative depth of water (d/L = 0.16, 0.12, 
0.10) for an (a/d) ratio. Also, it is seen that the horizontal force gradually decreases with the  
 
Table 1 
Comparison of horizontal force between analytical values (Fx) and the numerical values (Fn) in various relative 
depths of water for d = 3m, l1 = 1mm, l3 = 0.5m. 
  
                            T = 3s                    
a/d                    Fx10-9 
                                Analytical 

 d/L = 0.24 
   Fn10-9 
Numerical  

 
 
Error (%) 

       T = 4s 
   Fx10-9 

Analytical 

d/L = 0.16 
   Fn10-9 
Numerical  

 
 
Error (%) 

Type I (z/d=0) 
0.033 1.215921  1.175209  3.3482   0.561357  0.542608  3.3398   
0.075 2.697233  2.606919  3.3484   1.231161  1.190041  3.3400   
0.116 4.135670  3.997182  3.3486   1.865530 1.803218  3.3402   
 
Type II (z/d=-1) 
0.033 0.576171  0.556878   3.3484   0.388511 0.375535  3.3399   

0.075 1.257797   1.215676   3.3488   0.842258 0.814125  3.3401   
0.116             1.896547  1.833026  3.3493   1.260570 1.218461  3.3404   
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decreasing z/d (= 0 to -1) for an (a/d) ratio. Fig. 2 also shows that the horizontal force of two types, 
which gradually converges to the decreasing value of the relative depth of water and when d/L = 0.10, 
the convergence is very close. Fig. 2 also shows that the results obtained from analytical solutions are 
in good agreement with the results obtained from numerical solutions. 
    Fig. 3 shows the plots of horizontal force (Fx) and vertical force (Fz) versus non-dimensional wave 
amplitude (a/d) on the inclined plate for  = 900 600 450 300 at a relative depth d/L=0.24. It is 
observed that Fx decreases with the decrease of plate angle and the vertical force increases with the 
decrease of plate angle.   Fx and Fz are approximately same at  = 450. It is also observed that the 
vertical force (Fz) is high at =300 compared to the horizontal force (Fx).                    
 
Table 2 
Comparison of horizontal force between analytical values (Fx) and the numerical values (Fn) in various relative 
depths of water for d = 3m, l1 = 1mm, l3 = 0.5m. 
 
                               T = 5s  d/L = 0.12                                           T = 6s  d/L = 0.10 
a/d                     Fx10-9          Fn10-9                                      Fx10-9          Fn10-9 
                        Analytical     Numerical         Error (%)          Analytical       Numerical      Error (%) 
Type I (z/d=0) 
0.033 0.330093 0.319077  3.3371   0.219537 0.212213 3.3358   
0.075 0.719403 0.695395  3.3372   0.476745 0.460841  3.3359   
0.116 1.082817  1.046680 3.3373   0.714827 0.690980  3.3360   
 
Type II (z/d=-1) 

     

0.033 0.264637 0.255806  3.3371   0.189167  0.182857 3.3358   
0.075 0.572129  0.553035  3.3372   0.408413  0.394789  3.3359   
0.116 0.853724 0.825232 3.3374   0.608534 0.588233 3.3360   

 
     Fig.4 shows the plots of horizontal force (Fx) and vertical force (Fz) versus non-dimensional wave 
amplitude (a/d) on the inclined plate for  = 900 600 450 300 at a relative depth d/L = 0.12. It is 
observed that Fx decreases with the decrease of plate angle and the vertical force Fz increases with the 
decrease of plate angle.  It is also observed from the Figures 3 and 4 that Fx is more at time T=3s and 
at a relative depth d/L = 0.24 for  = 900 compared to the other relative depth of water. 
     Fig. 5 shows the plots of horizontal force (Fx) versus wave amplitude (a/d) on the inclined plate for 
 = 600 450 300 at 0.10  d/L  0.24. It is observed that the horizontal force on the plate decreases with 
the decrease plate angle. It is also observed from the figures that horizontal force (Fx) is more at a 
relative depth d/L = 0.24 and this force decreases at a relative depth of water d/L = 0.10. This 
concludes that the horizontal wave force on the plate is important at a relative depth of water (d/L = 
0.24) compared to the other relative depth of water.   
        Fig. 6 shows the plots of vertical force (Fz) versus wave amplitude (a/d) on the inclined plate for 
=600 450 300 at 0.10  d/L  0.24. It is observed that the vertical force at the plate is more at a plate 
angle  = 450 compared to another angle of the plate.  And this vertical force is more of a relative 
depth d/L=0.24 and is very low at a relative depth d/L=0.10.  
     Fig. 7 shows that the time histories of horizontal forces (Fx) on the inclined plate at different plate 
angles  = 900 600 450 and at different wave stiffness H/L = 0.06 to 0.02 by keeping the depth of water 
d = 3m is constant. The wave forces are obtained from first order solution, which included in the 
figures to demonstrate the effects of linear wave theory.  
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Fig. 2. Horizontal force (Fx) versus wave amplitude 
(a/d) for z/d=0 (type I) & z/d=-1 (type II). Here, d = 
3m, l1 = 1mm and l3 = 0.5m. 

Fig. 3. Fx and Fz versus wave amplitude (a/d) at the free 
surface (z/d=0). Here, T=3s, d = 3m. 
 

 

  

Fig. 4. Fx and Fz versus wave amplitude (a/d) at the 
free surface (z/d=0). Here, T=5s, d = 3m. 
 

Fig. 5. Horizontal force (Fx) versus wave amplitude 
(a/d) at the free surface (z/d=0) for different plate 
angles  = 600 450 300.  Here, d = 3m, l1 = 1mm and l3 
= 0.5m 

 

  

Fig. 6. Vertical force (Fx) versus wave amplitude (a/d) 
at the free surface (z/d=0) for different plate angles  = 
600 450 300.  Here, d = 3m, l1 = 1mm and l3 = 0.5m 
 

Fig. 7. Horizontal force (Fx) versus time (t/T) for the 
type I (z/d = 0). Here, a = 0.35m, d = 3m.  
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6. Concluding remarks  
 
The present work is studied to analyze the wave forces on submerged inclined rectangular thin plate 
in intermediate depth of water (0.1  d/L  0.24) under different configurations. It has been observed 
that the wave force on the plate at the mean free surface (z/d = 0) is maximum for d/L = 0.24 and at 
H/L = 0.06 compared to the other relative depth of water. It has also shown that the horizontal force of 
two types, which gradually converges to the decreasing value of the relative depth of water and when 
d/L = 0.10, the convergence is very close. Fx and Fz are both inversely proportional to the plate angle.  
That is when plate angle decreases Fx decreases and Fz increases and vice versa. Fx and Fz are 
approximately same at  = 450.  
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