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Abstract. A numerical method is used to solve an inverse heat conduction problem using finite 

difference method and one-dimensional Newton-Raphson optimization technique. A 

thermocouple placed anywhere on the one-dimensional rod will read the temperature at that 

point, this temperature when fed into the FORTRAN code can predict the heat flux subjected 

onto the rod. The code has been further modified to predict variable heat flux (with time) as well. 

Error contribution of distance of thermocouple from source and time is demonstrated. Accurate 

prediction of heat flux variable with time has also been validated. First, a FORTRAN code was 

written to simulate and solve a transient model of a rod subjected to constant temperatures on 

both sides using Finite Difference Method. Next, a FORTRAN code was written to solve a steady 

state, and consequently a transient, model of a rod subjected to heat flux from one side using 

FDM and is tested to measure temperature at any node on the rod. Further, this code was 

modified to predict heat flux based on temperature data provided using Newton-Raphson 

optimization technique. 

1. Introduction 

Inverse heat conduction techniques are used when output can be measured, consequently the input is to 

be calculated. It finds its application in various fields. To predict heat generated inside a furnace by 

measuring temperature from the outside wall, to tweak the parameters according to the needs. To predict 

heat flux acting on the head of a re-entry vehicle by measuring temperature from the inside, so that 

appropriate materials can be used to make the heat shield among various other applications. 

Numerical methods for such problems have been developed before, most of them being based on 

discretization by finite difference scheme. Vogel et al. [1] takes a ‘Boundary inverse heat conduction 

problem’ in which a one-dimensional rod has 2 temperature boundary conditions and 2 thermocouples 

placed at 10% away from each end. The end temperatures are estimated by using inverse conduction 

technology considering the temperature history from the thermocouples. R.C.Mehta [2] considers a case 

with heat flux on one side of the rod and the other side open ended. In the inverse conduction technique 

used, he assumes an initial value for heat flux and reduces the difference between the calculated 

temperature and the temperature reading using Newton-Raphson method. R.C.Mehta[3], a solution is 
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proposed for inverse heat conduction with a heat flux and a radiation boundary condition using Regula-

Falsi iterative method. 

          In the present paper, an optimisation technique is used to find the heat flux subjected onto a one-

dimensional rod using FDM coded on FORTRAN. Firstly, temperature(calculated) is found at the end 

of the rod for a certain amount of flux and Newton-Raphson optimisation is used to estimate 

corresponding flux for the (measured) temperature using the same relation. 

 

2. Problem Formulation 

Governing equation for a 1D heat conduction is as follows: 

 

𝛼
𝜕2𝑇

𝜕𝑥2
=  

𝜕𝑇

𝜕𝑡
                                                                                  (1) 

          Inverse heat conduction problem to find the heat flux is solved as an initial value problem in the 

first step. Here we have used Crank Nicholson formation for discretizing the heat equation using finite 

difference method.  
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Here, 𝜆 =  𝛼
∆𝑡

(∆𝑥)2 

 

          A Neumann boundary condition is used as a boundary condition, which gives us the heat equation 

in the following form on the boundaries. 
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Figure 1. Neumann Condition 

          Equation (3) and (4) have heat flux and insulated boundary condition, respectively. Rearranging 

the above formulation in tridiagonal form would give us the following equation (5). Here, θ = 0.5, for 

Crank-Nicholson Scheme. The LHS in the above equation is in the form of a tridiagonal matrix (TDMA) 

which is solved by Thomas Algorithm. Using this we can find the temperature at any node in a one-

dimensional rod after a certain amount of heat flux is applied for a certain amount of time.  
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          In the inverse heat conduction, we’re tackling, the only input is temperature measured at a certain 

distance from the source flux and after a certain amount of time. Newton-Raphson optimisation is used 

to extrapolate heat flux from the measured temperature(tm). The main reason of using this optimisation 

method is its precision in one variable optimisation. First, a dummy value of heat flux(Q) is given and 

its corresponding nodal temperatures are found after a small amount of time. The calculated temperature 

is then subtracted from the measured temperature, the modulus of which is compared to a predetermined 

error value. If the modulus value doesn’t satisfy the inequality, the value of dummy Q is either increased 

or decreased based on the sign. This is an iterative procedure till we reach a converged value. 

 

𝑓(𝑥) =  |(𝑇𝑐 − 𝑇𝑚)|  ≤ 𝜀                                                          (6) 
 

𝑞𝑖+1 =  𝑞𝑖 −  
𝑓(𝑥)

𝑓′(𝑥)
                                                                 (7) 

3. Numerical Analysis and Results 

Three different prototypes have been considered with different properties in terms of materials, shape 

and dimensions.  

 

Table 1 - Properties of materials used 

Properties Copper Steel 

Length(m) 0.0025 0.05 

Density(kg/m3) 8960 7800 

Thermal Conductivity(W/m.K) 400 50 

Cp(kJ/kg.K) 1000 1000 

 

          The above 2 test subjects are objected to various types of heat flux inputs. The first is with constant 

heat flux subjected onto the rod followed by reading temperature at every node on the rod, and predicting 

the value of the heat flux with temperature at each node as measured temperature (tm). The second is, 

heat flux changing with time. There are 3 kinds of inputs that have been considered, namely, step input, 

linearly varying input, and input in the form of a sine curve. In this case, temperature readings are taken 

from a single node at certain time steps, the time steps can be varying or constant in size. The full data 

set of temperature is used to estimate the heat flux the rod was subjected to overtime. 
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Figure 2. Variable Heat Flux input: Step Input, Linearly Varying and Input in the form of sine curve 

          Figure 4,5 and 6 describes the solution plots for the test cases shown in figure 2. Inferences have 

been made based on acquired data. 

 

  

              (a)        (b) 

  

               (c)      (d) 

Figure 3. Error vs Percent Length: a) Copper at t = 5sec, b) Copper at t = 10sec, c) Steel at t = 5sec, 

and d) Steel at t = 10sec 
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                (a)       (b) 

  

               (c)      (d) 

Figure 4. Heat Flux input in step form for t = 40 sec, a) Input and Output graph(Copper), b) Error vs 

Time (Copper), c) Input and Output graph(Steel) and, d) Error vs Time (Steel) 

  

                (a)       (b) 
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               (c)      (d) 

Figure 5. Heat Flux input in linearly varying form for t = 40 sec, a) Input and Output graph(Copper), 

b) Error vs Time (Copper), c) Input and Output graph(Steel) and, d) Error vs Time (Steel) 

  

                (a)      (b) 

  

               (c)      (d) 

Figure 6. Heat Flux input in Sine form for t = 360 sec, a) Input and Output graph(Copper), b) Error vs 

Time (Copper), c) Input and Output graph(Steel) and, d) Error vs Time (Steel) 
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          It can be clearly observed from the graphs and results that the error percentage of predicting the 

heat flux is very low. From figure 3, as the temperature reading sensor is moved away from the source, 

the error increases and increases rapidly after some distance. This rapid increase gets delayed along the 

distance as time t, is increased. Also, the effect of total length can be clearly scene, the longer the rod 

has a higher error, this could be since the effect of the heat flux takes some time to propagate through 

the rod, and for this reason for the upcoming cases, we have considered the end node readings for copper 

and readings at around quarter distance from the source for stainless steel. In figures 4, 5, and 6, there 

are few similar patterns that can be observed. The error percentage is fairly low in both the cases. 

However, it can be observed that in each case separately, the error is comparatively high when the heat 

flux applied is low. 

 

4. Conclusion 

Using Newton-Raphson Optimisation to solve an inverse conduction initial value problem has yielded 

fruitful results, under a set of circumstances. The circumstance for the best result is when the 

thermocouple is as close to the source as possible for however long its being heated before taking 

temperature readings. The trade-off will be between speed and precision. The advantage of this method 

is the low error percentage even for a large domain.  
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