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Abstract. In this paper, the free vibration analysis of simply supported bimodular composite 

material laminated curved beam has been carried out using equivalent stiffness method. The 

Non-dimensional free vibration frequencies for positive half of vibration cycle and for negative 

half of vibration cycle have been presented for different ratio and laminated scheme. The 

analysis is based on classical beam theory. It is observed that the percentage difference of free 

vibration frequencies obtained from different equivalent stiffness method is more for angle ply 

laminated beam and for cross ply laminated beam the percentage difference is very less.  

1. Introduction 
There are some composite materials which exhibit different behavior in tension and compression as 

shown in figure 1 [1]. These materials are called bimodular composite material. A few examples of 

such materials are aramid rubber, polyester rubber, carbon-carbon composite, bone and soft tissues etc. 

The analysis of bimodular material laminated structure is little bit difficult as compare to unimodular 

composite material laminated structure. Timoshenko [2] was the first person to discuss about the 

bimodular materials. The major issue of bimodular material is the assignment of material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Stress-strain curve of bimodular material 

 

properties which makes the analysis difficult. Jones [1], Bert [3], Papazoglou [4] and Khan et al. [5] 

have suggested different material models to assign proper material properties for the analysis of 

bimodular material laminated structural element. It has been noticed from the literature available[6-8] 

in this field that the Bert’s material model is used mostly and almost all the analysis were confined to 

static, stability and free vibration analysis of plates. The free and forced vibration analysis of plates, 

has been carried out by Patel et al. [9]. They have used their own model and have presented a 

comparative study of Bert’s model and their own model. The research paper on bimodular composite 

material laminated beam is meager. In this paper the free vibration analysis of bimodular composite 

material laminated curved beam has been carried out using classical beam theory and the stiffness 

parameters [A, B, D] have been calculated using different equivalent stiffness method. 
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2. Methodology 
A thin composite simply supported curved beam having radius of curvature R width b and thickness h 

as shown in figure 2. The assumed displacement field is: 
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The strain displacement relation is assumed as: 

  z 0  
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              Figure 2. Geometry and coordinate system of simply supported laminated curved beam 

 

Using Hamilton’s principles the equation of motions of curved beam can be written as [10]: 
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where, 
               

 

x

M
Q




                                                                                              

Where px, pz are external axial and normal forces respectively and for n numbers of lamina and 
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The resultant force and moment are calculated as: 
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The resultant force and moment can be rewritten in terms of various stiffness parameter (A11: 

Extensional stiffness, B11: Bending stretching coupling stiffness and D11: Bending stiffness) and 

primary variables as: 
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2.1. Solution methodology [10] 

Considering simply supported boundary condition the general solutions is assumed as: 
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where,
 a

m
m


   , Am, Cm are constant, m is integer and a is length of the beam. 

The external transverse force(pz) is expanded in Fourier series and expressed as: 
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Using equation (6) to (9), equation (3) and (4) can be rewritten as: 
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where, 
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2.2. The equivalent stiffness method  

The stiffness parameters (A11, B11, D11) are calculated using different equivalent stiffness method 

 2.2.1. Vinson-Sierakowski equivalent stiffness method (VS) [11] 

In this method the equivalent stiffness parameters are calculated as: 
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Here, 
kE11 ,

kE22 ,
kG12 , 

k

12
 
and 

k
 
are young’s modulus in fiber direction, young’s modulus transverse 

to fiber direction, in-plane shear deformation, in-plane poison ratio and ply-angle for kth layer 

respectively. 

2.2.2. Rios- Chan equivalent stiffness method (RC) [12] 

In this method the entire [ABD] matrix, relates the in-plane force and moment resultants to the strain, 

is calculated. The relationship among in-plane force and moment resultants and strains can be written 

as: 
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All components of the [ABD] can be calculated for unimodular material as given [14] and for 

bimodular materials the required modification is to be done. 

The equivalent stiffness parameters are calculated as: 
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Where, a11=J11, b11=J14, d11=J44 and [J]=[ABD]-1 

For free vibration the value of axial and normal force are zero and then from above equation we 

obtained natural frequency. For bimodular material, there are two natural frequency, positive half 

cycle natural frequency and negative half cycle natural frequency. After obtained the value of natural 

frequency non-dimensional frequency is obtained by: 
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E1c is fibre direction modulus of elasticity in compression. 

3. Results and discussion 
For the present analysis we have considered aramid rubber and polyester rubber composite materials. 

The material properties of aramid rubber and polyester rubber are given in table 1. In this analysis a 

rectangular cross section simply supported curved beam having 1m length (a), 0.025m width (b) and 

0.01m height (h) is considered. The convergence study of non-dimensional positive half cycle 

frequency for [0]4 laminated bimodular composite has been presented in table 2 for a/R =1. It is 

observed that the converged value of frequency has been obtained in forth iteration. In table 3 the non-

dimensional positive and negative half cycle free vibration frequencies for fundamental mode of 

vibration have been presented for cross-ply laminated beam  for different a/R ratio. It is observed that 

the percentage difference of positive and negative half cycle frequencies is very less and also there is 

no difference between the results of VS and RC methods. The non-dimensional frequency decreases as 

a/R increases for almost all cases for both the materials. 

Table 1. Material properties of aramid rubber and polyester rubber [7] 

 

Materials 

properties 

Properties of aramid rubber Properties of polyester rubber 

Tension(GPa) Compression(GPa) Tension(GPa) Compression(GPa) 

E1 3.58 0.012 0.617 0.0369 

E2 0.00909 0.012 0.008 0.0106 
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E3 0.00909 0.012 0.008 0.0106 

G12 0.0037 0.0037 0.00262 0.00267 

G13 0.0037 0.0037 0.00262 0.00267 

G23 0.0029 0.0029 0.00223 0.00475 

12
 

0.416 0.205 0.475 0.185 

13
 

0.416 0.205 0.475 0.185 

23
 

0.416 0.205 0.475 0.185 


 1580 1580 970 970 

Table 2. Convergence study of frequency for [0]4 laminated bimodular composite 

 Iteration No 

1 2 3 4 5 

Non-dimensional 

Frequency 

54.056 31.027 22.481 20.794 20.794 

Table 3. Non-dimensional frequencies for [0/90]s laminated curved beam for different a/R ratio. 

 

 

a/R 

Aramid-Rubber Polyester-Rubber 

Ω1 Ω2 Ω1 Ω2 

VS RC VS RC VS RC VS RC 

0.0 18.6571 18.6571 18.6572 18.6572 14.1653 14.1789 14.1653 14.1789 

0.1 18.6123 18.6124 18.6456 18.6457 14.1344 14.1480 14.1533 14.1669 

0.2 18.5136 18.5136 18.5799 18.5799 14.0610 14.0746 14.0985 14.1121 

0.3 18.3697 18.3697 18.4686 18.4687 13.9468 13.9602 14.0023 14.0158 

0.5 18.0554 18.0555 18.2135 18.2137 13.6070 13.6201 13.6955 13.7087 

0.8 18.5320 18.5323 18.6960 18.6966 12.8986 12.9110 13.0242 13.0367 

1.0 20.4796 20.4802 20.5780 20.5788 12.3929 12.4047 12.5329 12.5448 

Table 4. Non-dimensional frequencies for [302/602] laminated curved beam for different a/R ratio. 

 

 

a/R 

Aramid-Rubber Polyester-Rubber 

Ω1 Ω2 Ω1 Ω2 

VS RC VS RC VS RC VS RC 

0.0 10.3502 12.5788 8.8227 8.8344 5.1282 6.6606 4.8112 5.3765 

0.1 10.3331 12.5601 8.8090 8.8208 5.1199 6.6505 4.8033 5.3678 

0.2 10.2849 12.5035 8.7686 8.7804 5.0961 6.6201 4.7810 5.3428 

0.3 10.2059 12.4094 8.7021 8.7139 5.0571 6.5697 4.7443 5.3017 

0.5 9.9599 12.1139 8.4936 8.5054 4.9354 6.4116 4.6301 5.1735 

0.8 9.3942 11.4297 8.0124 8.0238 4.6552 6.0459 4.3672 4.8779 

1.0 8.9118 10.8437 7.6006 7.6116 4.4160 5.7329 4.1429 4.6254 

In table 4 the non-dimensional frequencies are presented for angle ply laminated beam. The positive 

and negative half cycle frequencies are not same as cross ply laminated beam. The results obtained 

from VS and RC methods are not same. The difference between positive and negative half cycle 

frequencies decreases as a/R increases. The difference between the results obtained from VS and RC 

method decreases as a/R increases. 

4. Conclusion 
The following conclusion are drawn 
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1. For cross-ply laminated beam the positive and negative half cycle frequencies are almost 

same. The VS and RC method give the same results.  

2. For angle-ply laminated beam the positive and negative half cycle frequencies are not same. 

The VS and RC method give the different results. 

3. The difference between positive and negative half cycle frequencies decreases as a/R increases 

for angle-ply laminated beam.  

4. The difference between the results obtained from VS and RC method decreases as a/R 

increases. 

5. Symbols and notation 
a, b, h, R Dimensions of curved beam 

N, M, Q Normal force, bending moment and shear force respectively 

u, u0 Axial displacement at arbitrary point and mid-surface respectively  

v Displacement in Y-direction 

w, w0 Transverse displacement at arbitrary point and mid-surface respectively 

0,   Strain at arbitrary point and mid-surface respectively 

  Curvature change 

21 ,   Positive and negative frequency respectively 

21 ,   Positive and negative non-dimensional frequency respectively 
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