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Abstract. This study presents a technique to estimate the parameter values of the soft switch, 

which can be used for reduction of pressure surge due to abrupt mode shift or speed reversal in 

high pressure hydrostatic transmission. The estimation of critical parameters is essential for 

component design and fabrication thereafter. Different hydraulic systems should have different 

parameter values of the soft switch. It depends on the developed pressure in the switched 

volume and valve transition time. The throttling energy loss of an on/off valve controlled 

hydraulic system is influenced by different component parameters of the soft switch, which has 

also been investigated in this work. 

1. Introduction 

Power hydraulic system is inefficient as comparison to the other system (mechanical, electrical etc.) 

due to multiple sources of energy losses. In power hydraulics, different types of energy losses are 

frictional loss of fluid, leakage loss, fluid compressibility loss, accumulator hysteresis loss, pressure 

drop loss and throttling energy loss of an on/off valve. Among these, throttling energy loss is the 

major energy loss i.e. 60% of the total energy loss and rest are other losses [1-2]. This is caused by the 

transition of an on/off valve from one position to the other position on a hydraulic circuit. Sometime 

this loss is also called as valve transition time loss. Therefore, it is important to enhance the energy 

efficiency of the hydraulic system by minimizing the throttling energy loss. The energy efficiency of a 

hydraulic system can be increased by using a unidirectional 3-way rotary valve for pulse width 

modulation (PWM) which modulate rapid switching, as a result decreases the throttling energy loss 

[3]. The concept of 3-way rotary valve and its design, governing equitation and it dynamic model were 

validated experimentally by Tu et al. [4]. Later, extend the 3-way rotary valve concept into 4-way 

tandem rotary valve for virtually variable displacement pump/motors (VVDPM) hydraulic system [5]. 

However, the results shown that the efficiency of the VVDPM was decreased by 6%. In [6-7], authors 

were reported a switched inertance hydraulic system (SIHS) to control the supply flow and pressure. 

That system (SIHS) commenced a flow booster for investigate and it comprises of switching element, 

a capacitance and an inductance (inertance). The experimental results shown that the system efficiency 

can be increased significantly by using SIHS. For further development of SIHS, Yudell and Van de 

Ven [8] had applied power electronics concept i.e. analog of zero-voltage-switching concept on it. It 

allowed throttled fluid to store in a capacitive element and it bypassed through check valves in parallel 
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with the switching valves. It was observed that the system with soft switching boost converter 

provided 42% more efficient as comparison to the system of boost converter without soft switching. 

For further improvement of energy efficiency of the hydraulic system, Rannow and Li [9] had 

provided a concept of soft switching. In that concept, an additional component i.e. soft switch was 

incorporated into an on/off valve controlled hydraulic system. The main task of the soft switch was to 

store the high pressure switched volume working fluid into it, temporarily, when the valve was in 

transition mode. The soft switch is comprised of four parts: cylindrical chamber, one piston, one 

compression spring and an external locking/unlocking mechanism. Initially, the piston was locked at 

the middle of the soft switch. The simulation responses substantiated that the throttling energy loss and 

total energy loss of the system were reduced by 81% and 64%, respectively by implementing the soft 

switching concept. But it has a drawback on locking/unlocking mechanism. If the piston is not 

released or locked with appropriate timing, it may accumulate the throttling energy loss. Thus, the 

mechanism is highly sensitive and should operate with high precise timing to diminish the throttling 

energy loss. To overcome the drawback, the soft switch was redesigned by Ven de Ven [10] where 

high pressure signal in the switched volume was used to trigger the unlocking mechanism of the piston 

of the soft switch. Also, the redesigned soft switch piston was locked at the top of the cylindrical 

chamber which enhanced the storing capacity of the soft switch in comparison with the previous 

model. Author [10] had simulated and compared the responses of five different configured hydraulic 

systems, without and with soft switch. It was established that the throttling energy loss of a valve 

controlled hydraulic system was reduced by 66.1%. That article ([10]) used two different types of soft 

switch: one is locking soft switch and another is passive soft switch. Thereafter, Beckstrand et al. [11] 

validated the same theory of soft switching experimentally by incorporating locking soft switch only. 

But it could not provide the reason of eliminating of the passive soft switch from the system. Later, the 

influence of the passive soft switched is reported by Mahato et al. in [12] and remarked that 

additionally 3.25% throttling energy loss can be saved by discarding passive soft switch from the 

system. Thereafter, Mahato et al. [13] experimentally validated the locking soft switch performance 

regarding reducing the throttling energy loss by considering a typical hydrostatic drive system. 

Authors in [13] used multi-run- simulation technique to optimize the parameter values of the locking 

soft switch. The estimation of parameter values of the soft switch is highly important to operate the 

soft switch precisely. But all these studies have ignored this. Also, it is imperative for fabrication of 

the locking soft switch. Moreover, the influence of different parameters of the soft switch on the 

throttling energy loss of the hydraulic system has been ignored previously but same has been reported 

in this work. 

This article presents a method to estimate parameter values of the locking soft switch for a 

particular hydraulic system that is required to fabricate the soft switch. Also, it reports the influence of 

soft switch piston radius, spring stiffness and dynamic viscosity of different working fluids on the 

throttling energy loss of an on/off valve controlled hydraulic system. 

2. Operation of an On/off valve controlled hydraulic system with locking soft switch 

Hydraulic pump (fixed displacement) supplied an invariable flow (Qpump) to the loading side of the 

hydraulic circuit through the load valve. The loading side flow is varied and it is controlled by the 

valves (load and tank valve). At one time only one valve is opened and other is in closed condition. 

Initially, the pump flow is passed through the tank valve. When the tank valve starts to close, a high 

pressure is developed into the system until the load valve will opened completely that means the 

locking soft switch starts working. Similarly, during the closing mode of the load valve, the locking 

soft switch is in working mode until the tank will opened fully. The detail working principle of the soft 

switch is addressed by Van de Ven in [10]. The soft switch facilitates the reduction of the valve 

transition time loss [9-13]. The locking soft switch is a combined mechanism of piston, compression 

spring, cylindrical chamber and two check valves. Referring to figure 1, one check valve restricts the 

flow from accumulator to the soft switch. This check valve used for safety purpose only to releases the 

high pressure from the rear end chamber of the soft switch. Other check valve allows the flow from 

the tank to the rear end chamber of the soft switch whenever the pressure at the rear end chamber is 

less than the tank pressure. This situation arises only when the cross drilled port of the piston coincides 
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with the annulus of the cylindrical chamber of the soft switch. In such situation soft switch releases the 

stored fluid into the main line. 

The governing equations (steady state equations) of the said system have been already discussed in 

the article [12]. The pulse width modulation (PWM) of the valve is shown in figure 2. Referring to the 

figure 2, initially the tank valve is opened and the load valve is closed condition. The full flow of the 

pump is passed through the tank valve. The closing transition time period of the tank valve is t1 and 

opening transition time period of the load valve is t2. After certain period of operation of the load 

valve, the closing transition time period of the load valve is t3 and thereafter subsequent opening 

transition time period of the tank valve is t4. Thus, at point 7 (refer figure 2), the system completed one 

duty cycle. 

  

Figure 1. On/off valve controlled hydraulic 

system with locking soft switch 

Figure 2. Pulse Width Modulation (PWM) of 

the valve 

3. Process of estimating the soft switch parameter values 

In this section, the complete design of locking soft switch and its parameter values estimating process 

has been discussed which is useful for fabrication of the soft switch. In previous papers, this topic has 

been ignored. The detail sectional view of the locking soft switch is shown in figure 3. 

 

Figure 3. Detail cross-section view of the locking soft switch and it components 

3.1. Parameter values estimation of the compression spring 

The force applied on the soft switch piston is estimated from the dynamics of soft switch and is 

expressed in equation. (1) 

.
sv ss pld s s ss ss
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m

− − −
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 (1) 

where, Psv is the measured switched volume pressure; ass (=πr2) is the piston surface area: Fpld, ks and xs 

are the preload compressive force applied to the spring, spring stiffness, and spring displacement, 

respectively; mss is the piston mass; vss is the linear velocity of the piston and µss is the frictional 

resistance between the piston and internal surface of the cylindrical chamber. 



4

1234567890‘’“”

International Conference on Mechanical, Materials and Renewable Energy IOP Publishing

IOP Conf. Series: Materials Science and Engineering 377 (2018) 012033 doi:10.1088/1757-899X/377/1/012033

 
 
 
 
 
 

The wire diameter of the spring (d) is estimated from equation (2) 

8 wfk Fc
d


=

                                                                                 

 (2) 

where, F is applied force on the spring, c is spring index ( ( )c D d= ), whose numerical value to be 

preferred in the range 6 to 9 for close tolerance spring and where subjected to cyclic loading [14]. D is 

the mean coil diameter ( ( ) 2i oD D D= + ). Di and Do are the inside and outside diameter of the spring 

coil respectively. τ is the permissible shear stress of the spring and kwf is the Wahl factor which is 

expressed as 

4 1 0.615

4 4
wf

c
k

c c

−
= +

−
                                                                        (3) 

The number of the coil of the spring (n) is calculated by equation (4) 
4

38 s

Gd
n

D k
=                                                                                          (4) 

where, G is the modulus of rigidity of the spring. 

The free length of the spring (lf) is estimated by equation (5) 

( )1f tl nd n g = + − +                                                                     (5) 

where, gt is the gap between adjacent coils and δ is deflection of the spring when it’s subjected to 

maximum load. 

The pitch of the spring (Pi) is expressed as 

( )1
f

i

l
P

n
=

−
                                                                                  

(6) 

Therefore, the total length of the soft switch (Lss) is 

sllL fssss 2++=
                                                                           (7) 

where, lss and s are the length of the soft switch piston and wall thickness of the soft switch, 

respectively. 

4. Parameter influences 

The dynamic response is important for the hydraulic system performance. The influence of different 

soft switch parameter (piston radius, spring stiffness and dynamic viscosity of the working fluid) 

values on the dynamic responses of the soft switch has been analysed. The parameter values used for 

simulation are available in [12]. The effect on the throttling energy loss of the system with the 

variation of the piston radius is shown in figure 4. 

 

Figure 4. Comparison of throttling energy loss with the variation of piston radius 
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The throttling energy loss is minimum i.e. 1.483 J, when the piston radius is 4.5×10-3 m which is 

also the optimized parameter value of the piston radius as per the article [12]. Apart from that other 

values accumulate more throttling energy loss. Also, lower value of the piston radius needs more 

precise fabrication of the soft switch. 

The influence of spring stiffness on the throttling energy loss of the system is shown in figure 5. 

The throttling energy loss is minimum i.e. 1.483 J, when the spring stiffness is 6276 N/m. This is 

increased with increasing the spring stiffness. Also, the throttling energy loss increases with 

decreasing the spring stiffness from its optimum value 6276 N/m. Thus, it can be said that all other 

values except the optimum value of the spring stiffness, accumulated more energy loss from the 

system. 

 

Figure 5. Comparison of throttling energy loss with the variation spring stiffness 

 

Similarly, a comparison analysis is made by varying the dynamic viscosity of the different working 

fluids. However, it is assumed that the working fluid is incompressible and its properties do not 

change with temperature. The main purpose of this study is to analyze the effect of throttling energy 

loss with different working fluids as their dynamic viscosities are different. Figure 6 represents the 

affect on throttling energy loss with various dynamic viscosities working fluids. It is observed that 

lower dynamic viscosities working fluid provides better energy efficiency of the hydraulic system. The 

throttling energy loss increased with the higher dynamic viscosities working fluids.  

 

Figure 6. Comparison of throttling energy loss with various dynamic viscosities working fluids 
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5. Conclusions 

The way of reduction of the throttling energy loss of the hydraulic system by using soft switching 

concept is an important and power full technique. It provides massive energy saving by incorporating 

a low-cost equipment i.e. soft switch into the hydraulic system before the on/off valve. The following 

conclusions are obtained from the present study. 

1. The throttling energy loss of the system is higher except the corresponding optimized value of 

piston radius. Any other value of piston radius except its optimized valve can accumulate more 

throttling energy loss. 

2. All other values of spring stiffness rather than its optimized valve can also accumulate higher 

throttling energy loss. 

3. Higher values of dynamic viscosities of the working fluids increases throttling energy loss from the 

valve controlled hydraulic system. 
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