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Abstract. Polymer matrix composites have shown the ability to balance traditional polymer 

properties such as low weight and ease of processability with the strength and stiffness of 

reinforcing agents. Ball bearings are broadly used in industry from home appliances to 

aerospace industry. In order to prevent catastrophic damages, the proper functioning of these 

machine elements is extremely important. Therefore, it is important to examine the condition 

of the bearings and to know the severity of the defects prior to they cause severe catastrophic 

damages. Hence, the study of vibrations produced by these defects plays a significant role in 

quality check as well as for condition monitoring of the ball bearing/machine element. In this 

paper, an attempt is made to study the performance of polymer ball bearings made with 

Polytetrafluoroethylene (PTFE) material using vibration analysis on different components of 

the bearing structure using the time and frequency domain parameters. This paper investigates 

the relationship between vibration frequency, RMS, amplitude and kurtosis for different speeds 

on new and defective ball bearing conditions. 

1.  Introduction 
As a sliding material, thermoplastics have long shown their suitability. For decades, they have been 

successfully used in sliding applications in precision engineering, electrical industries and in small 

electrical appliances, to name a few. Compared with metal bearings, the polymer bearing itself does 
not have high load carrying capacity, but they offer other advantages such as operation in dry running 

conditions and mixed friction, electrical insulation, chemical resistance, maintenance free operation, 

low noise and also have processing advantages.  
Ball bearings are one of the important basic components used in machinery for various 

engineering applications. These bearings are used in most of the engineering applications such as 

electric motors, pumps, roller skates and bicycles. In general ball bearings are made of four different 

components, the ball element, an outer ring, an inner ring and the cage.  

The cage element helps to separate the rolling elements on a regular basis and keep them in 

the inner and outer raceways to allow them to freely rotate on the raceways [1]. As ball bearings are 

most generally used components in machinery, these have received a great attention in the field of 
condition monitoring. Even a geometrically new bearing may also generate vibrations due to 

components running at heavy dynamic loads, high speeds and also due to existence of contact forces 
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between the bearing components. Bearing defects may be classified as localized and distributed. The 

localized defects include spalls, pits and cracks caused by fatigue on rolling surfaces [4]. The 

distributed defects comprise misaligned races, waviness, surface roughness and off size rolling 
elements. The sources of defects may be due to either abrasive wear or manufacturing error. Hence, 

study of vibrations produced by these defects plays a significant role in quality examination as well as 

for condition monitoring of the ball bearing/machinery [5].  
There are several techniques used in order to prevent bearing failure. Such as, wear debris 

analysis, oil analysis, vibration analysis and acoustic emission analysis. Among them vibration and 

acoustic emission analysis [8,11] are the most universally accepted techniques due to their ease of 

application. The time domain and frequency domain analysis are generally accepted for detecting 

defects in bearings. The frequency domain analysis is more useful as it identifies the exact nature of 

fault in the bearings. These frequencies of the ball bearing depend on the bearing characteristics and 

are calculated from the relations shown below. 
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At times the fault frequencies are not noticeable by Fast Fourier Transform spectrum, since 
the signals produced by the faults are covered by noise. In order to overcome this problem, many 

researchers have implemented signal processing methods. There are numerous techniques developed 

to detect local defects in bearing based on vibration signal processing [10]. Hence it is an important 

tool for condition monitoring through non-destructive testing. 

2.  Bearing Type and Bearing Material 
The bearing type used in this study is a single row deep groove ball bearing with bearing model 6204 

series. The ball bearing is made with thermoplastic material called Carbon fiber reinforced 

Polytetrafluoroethylene (CFRPTFE) has a highly crystalline structure with transition into an amorfic 

one at a temperature of 330°C. By virtue of its molecular structure, it has so called “easy slippage 
planes”, what results with a very small coefficient of friction when sliding against steel (as low as 

0.04) [2,6,9,12]. Carbon fiber reinforced Polytetrafluoroethylene is one of the thermoplastic materials 

that can replace metals and thermosets because of its long-term performance over a wide range of 
temperature conditions and harsh environments. It retains properties such as wear resistance, fatigue 

endurance, creep resistance and solvent resistance under demanding service conditions. Also, it is a 

lubricious, strong and has good dimensional stability. The details of the Carbon fiber reinforced 

Polytetrafluoroethylene (CFRPTEF) ball bearing used in the vibration analysis is shown in the Table 1 

and Figure 1. 

Table 1. Details of Carbon fiber reinforced Polytetrafluoroethylene (CFRPTFE) ball bearing. 

Bearing Type CFRPTFE 6204 

Outer diameter (D), mm 

Inner diameter (d), mm 

Width of the ring (W), mm 

Pitch diameter (Pd), mm 

Ball diameter (Bd), mm 

Number of Balls (Nb) 

Contact angle (β) 

47 

20 

14 

31.5 

7 

7 

0 
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Figure 1. Details of Carbon fiber reinforced Polytetrafluoroethylene (CFRPTFE) ball bearing for 

Vibration Analysis 

3.  Bearing Test rig 
The experimental bearing test rig is designed and fabricated to identify the presence of defects on a 

radially loaded Carbon fiber reinforced Polytetrafluoroethylene deep groove ball bearing by vibration 
and acoustic emission analysis technique is shown in Figure 2. 

 

 

Figure 2. Experimental set up for capturing vibration signals 

The bearing test setup consists of a circular shaft with a central rotor disc supported by two 

deep groove CFRPTFE ball bearings of 6204 series. An induction motor with variable speed drive is 

coupled to a flexible coupling which drives the shaft. The bearing test rig used for this study has a 

working speed of 10 to 2000 rpm, with central radial load of 200N capacity. The diameter of the shaft 

found to be 25mm considering the shaft subjected to both combined twisting and bending moment and 

a bushed pin type flexible coupling is used to connect two shafts. A provision is made to mount the 

accelerometer on top of the test bearing housing for capturing vibration signals from the test rig. 

4.  Experimentation 
Experiments were carried on four sets of Carbon fiber reinforced Polytetrafluoroethylene (CFRPTEF) 

ball bearings, a new bearing and three defective bearings, i.e., ball defect, outer race defect and inner 
race defect shown in Figure 3. These defects were produced artificially by a drill tool, one on the 

rolling ball, one on the outer race and the other on the inner race.  Initially vibration signals were 

captured for a new CFRPTEF ball bearing fixed on the bearing test rig by using PCB 356A16 tri-axial 
accelerometer mounted (magnetic type) on the bearing housing via eight-channel FFT analyzer (LMS 
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Figure 4. Variation of frequency spectra of CFRPTFE bearing running at 200 rpm under   

30N radial load 

 
Figure 5. Variation of frequency spectra of CFRPTFE bearing running at 400 rpm under   

30N radial load 

 
Figure 6. Variation of frequency spectra of CFRPTFE bearing running at 600 rpm under   

30N radial load 
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Figure 7. Variation of frequency spectra of CFRPTFE bearing running at 800 rpm under   

30N radial load 

 
Figure 8. Variation of frequency spectra of CFRPTFE bearing running at 1000 rpm under 

30N radial load 

 
Figure 9. The RMS of vibration response for varying speeds under 30N radial load. 
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The RMS of vibration response for varying speeds under 30N radial load is shown in Figure 9. For 

new and defect bearings the RMS value of velocity response increases with increase in speed under 

30N radial load. The RMS value is very high for inner and outer race defects when compared to the 
new bearing and ball defect bearings at 30N radial load. 

 
Figure 10. The kurtosis value of vibration response for varying speeds under 30N radial load. 

Kurtosis value lies below 3 for new bearing, which indicates the defect free state of the bearing shown 
in Figure 10. However, this value clearly indicates state of defect for other cases with inner race, outer 

race and ball defects which falls between 3 and 5. 

6.  Conclusions 
The vibration response of new and defect Carbon fiber reinforced Polytetrafluoroethylene (CFRPTEF) 

ball bearing is compared. The Fast Fourier Transform, Kurtosis and RMS are performed on each of the 

four bearings. From the vibration data, the amplitude of vibration spectrum is comparatively small for 

new bearing and ball defect bearing cases, while vibration spectrum is moderately larger for defects on 

outer race and inner race at 30N. Also from Figure 4 and 8, the values computed from the frequency 

domain signals and amplitude of vibrations for new and defect bearings shows the location of the fault 

and severity of the defect.  

The RMS value reveals that as the speed increases, the vibration response magnitude also increased. In 

addition, the Kurtosis value for new bearing falls below 3 which is a clear indication that no defects in 
the bearing, for inner race, outer race and ball defects the value falls between 3 and 5, which indicates 

the moderate defect on the bearings. Hence kurtosis value shows the state of the bearing. 
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