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Abstract. The texture, microstructure and Vickers microhardness evolution of Fe-36Ni and Fe-

48Ni (wt. %) alloys processed by accumulative roll-bonding (ARB) up to 6 cycles were 

investigated using Electron Back Scatter Diffraction (EBSD) and microhardness 

measurements. Both alloys underwent a substantial grain refinement. Grains were of elongated 

shape parallel to the rolling direction and slightly smaller for Fe-48Ni alloy. Both alloys exhibit 

a different texture evolution upon straining influenced by the deformation conditions. The 

microhardness of both alloys also showed the same trends up to 6 cycles and Fe-48Ni alloy has 

higher strength than Fe-36Ni alloy. These differences were mainly ascribed to the deformation 

conditions, solute pinning and stacking fault energy. 

1.  Introduction 

Severe plastic deformation (SPD) techniques such as equal channel angular pressing (ECAP) [1], 

high-pressure torsion (HPT) [2] and accumulative roll bonding (ARB) [3] have proven their ability to 

produce Ultra-Fine Grain (UFG) materials with high strengthening [4]. Up to now, among SPD 

techniques, only ARB processing has a great potential to be adapted to the industry in order to produce 

UFG materials in the form of large sheets due to its possibility as continuous process [5]. The 

evolution of crystallographic texture strongly depends on the SPD techniques [5–8]. Moreover, SPD 

techniques can lead to significant changes in the texture evolution compared to the conventional ones 

such as compression or rolling. Texture that develops after ARB processing is generally characterized 

by rolling-type components at the mid-thickness and shear-type components near the surface [5, 6]. 

However, there is a strong lack of studies on the effect of some special parameters such as deformation 

temperature, sample preparation or solute content on microstructure, texture and mechanical 

properties. 

The aim of the present work is to investigate the effect of solute content on the texture, 

microstructure and mechanical properties evolution after severe plastic deformation of a Fe-x (x=36 

and 48 wt.%) Ni alloy by ARB processing.  
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2.  Experimental Procedure 

The Fe-36%Ni (wt.%) and Fe-48%Ni (wt.%) alloys sheets were kindly provided by APERAM 

alloy society in France. ARB processing was carried out on a two-high mill of 2.2 kW power with 

rolls of 67 mm in diameter and rotating speed was 14 s-1. Between cycles the Fe-36Ni and Fe-48Ni 

samples were preheated at 550 °C and 350°C for 10 min, respectively. The ARB processing was 

repeated up to 6 cycles.  

Microstructure and microtexture were characterized using a scanning electron microscope FEG-

SEM SUPRA 55 VP operating at 20 kV with OIMTM software. For EBSD measurements, the Fe-36Ni 

and Fe-48Ni samples were cut in the cross-section (RD-ND plan, rolling direction-normal direction) 

near the mid-thickness and to the surface of samples, respectively and were mechanically polished and 

then electropolished. The quantitative texture analysis was carried out by calculating the Orientation 

Distribution Function (ODF) using MTex software [9].  

The Vickers microhardness of the samples was measured by SHIMADZU type HMV-2 tester using 

a load of 0.05 kg (HV0.05) and indentation time of 10 seconds. 

3.  Results and discussion 

Figure 1 presents the inverse pole figure (IPF) maps in the (RD-ND) plane showing the 

microstructure of the Fe-36Ni and Fe-48Ni alloys after ARB processing up 6 cycles. The EBSD maps 

reveal a substantial grain refinement and the grains are elongated parallel to the rolling direction. 

Figure 2 demonstrates the evolution of High angle grain boundaries (HAGB), the length (L along 

rolling direction) and the thickness (l along normal direction) of Fe-36Ni and Fe-48Ni ultrafine grains. 

The HAGB fraction decreases after 1 cycle leading to the formation of low angle grain boundaries 

(LAGB) due to the subdivision of primary grains and formation of subgrains.  

 

 

Figure 1: IPF maps showing the microstructure evolution of Fe-36Ni: a) 0 cycle, b) 1 cycle, c) 3 

cycles, d) 6 cycles and of Fe-48Ni: e) 0 cycle, f) 1 cycle, g) 3 cycles and h) 6 cycles. 

 

Then, the HAGB increases with increasing number of ARB cycles because of dislocation 

accumulation and the transformation of subgrain boundaries to HAGB to saturate near 68 % after 4 

cycles for Fe-36Ni and 74 % after 5 cycles for Fe-48Ni. For both alloys the grain size parameters (L 
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and l) decrease with increasing number of ARB cycles and saturate after 4 cycles. It is interesting to 

note that Fe-48Ni alloy produces slightly smaller grain size compared to Fe-36Ni alloy due the effect 

of solute pinning on grain boundary migration [10].  

The effect of heating treatment between cycles could also affect the final grain size by promoting 

dynamic recovery of dislocation [11]. In fact, during ARB processing the Fe-36Ni sample was heated 

at 550 °C for 10 min which is a suitable temperature for recrystallization (~ 600 °C) [12]. Although, 

the Fe-48Ni sample was treated at 350 °C which is far less than the effective temperature for 

recrystallization resulting hence in smaller grain size. 

 
 

Figure 2: (a) Grain size parameters (length along RD (L) and ND (l)) and (b) HAGB fraction of Fe-

36Ni and Fe-48Ni alloys as function of number of ARB cycles. 

 

Figure 3 presents the texture evolution of Fe-36Ni and Fe-48Ni alloys upon straining via ODF 

sections (2 = 0, 45 and 65°). The main ideal texture component position of FCC alloys is also 

presented and their descriptions are given in Table 1. The EBSD measurements were carried out in the 

cross section near to the mid-thickness of the Fe-36Ni sample where no shear components have been 

detected [5]. By contrast, the EBSD data of the Fe-48Ni samples were collected in the cross section 

near to the surface of the samples, where the shear texture is dominated by the R-Cube component [5].  

 

Table 1: Main ideal rolling texture components of FCC alloys. 

Component {hkl}<uvw> Euler Angle 

1  2 

Brass {110}<112> 35° 35° 45° 

Goss {110}<001> 0° 45° 0° 

Cube 

R-Cube 

{001}<100> 

{001}<110> 

0° 

45° 

0° 

0° 

0° 

0° 

Copper {112}<111> 90° 35° 45° 

S {231}<346> 59° 29° 63° 

 

 

Obviously, Fe-36Ni and Fe-48 alloys exhibit a different texture evolution. The Fe-36Ni alloy, with 

a strong Cube initial texture, developed a Brass component (after 1 cycle) and finally a Copper-type 

texture (Brass, S and Copper components) after 6 cycles. The Fe-48Ni alloy, with a quasi-random 

initial texture, developed a Rotated-Cube component after 1 cycle with is a typical shear texture 

component and subsequently a Copper component dominated after 6 cycles. This is in good agreement 
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with results of Jamaati et al. [13] who assumed that the shear (R-Cube) components present in the 

surface regions of the sample could rapidly rotate towards rolling components as soon as they are 

moved to the quarter thickness regions. Indeed, a simulation with VPSC has confirmed this 

assumption [6]. It is interesting to note that Brass component has not been developed in Fe-48Ni alloy 

during ARB processing. Instead of Brass component a new weak (1.9 mrd) component {012}<2 2 1> 

(43°, 24°,0°) has been development (ODF section at 2 =0°) starting from 3 cycles. Such texture 

component was already reported in Fe-36Ni alloy after cross ARB [6]. 

 

 

Figure 3: ODF sections at 2 =0, 45 and 65° of Fe-36Ni and Fe-48Ni alloys after ARB processing: a) 

0 cycle, b) 1 cycle, c) 3 cycles and d) 6 cycles. 

 

The evolution of microhardness of Fe-36Ni and Fe-48Ni alloys after nnnARB processing is shown 

in Figure 4. For both alloys, Hv increased up 3 cycles due to the combination of dislocation generation 

and grain refinement [14]. After 3 cycles the Hv values tends to stabilize well probably due to the 

occurrence of a concurrent dynamic recovery process [15]. It is interesting to note that the Hv values 

of Fe-48Ni alloy are almost 10 % higher that Fe-36Ni ones. This difference can be attributed to the 

effect of deformation temperature. It is known that the micorhardness decrease with increasing 

deformation temperature [16] mainly to due to the grain refinement Moreover, the difference in Hv 

values should probably arise from the stacking fault energy variation between the two alloys. An 

estimation of the reduced stacking fault energy γSFE /Gb has been done using an empirical correlation 
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between it and the ratio of Brass (VBrass), Copper (VCopper) and S (VS) volume fractions as proposed in 

the literature [17]: 

 
𝛾𝑆𝐹𝐸

𝐺𝑏
∝

2𝑉𝐵𝑟𝑎𝑠𝑠

𝑉𝐶𝑜𝑝𝑝𝑒𝑟+𝑉𝑆
                                                                       (1) 

where G is the shear modulus and b the Burgers vector.  

 

 

Figure 4: Microhardness evolution of Fe-36Ni and Fe-48Ni alloy as function of number of ARB 

cycles. 

 

Table 2 listed the estimated γSFE for Fe-36Ni and Fe-48Ni alloy after ARB processing. The deduced 

values are surprisingly in good agreement with the literature data [18]. Indeed, the Fe-48Ni exhibits a 

lower γSFE compared to Fe-36Ni alloy. Many authors have demonstrated that a reduction in SFE leads 

to a smaller grain size and increased strength and ductility in FCC deformed alloys [19, 20]. Following 

these authors, the higher strength was mainly due to grain refinement and higher density of twins 

formed during deformation processing. In fact, as the SFE decreased, the stacking faults became 

wider, making cross-slip more difficult. Hence, mechanical twinning was favored. It is well known 

that low stacking fault energy promotes strain hardening due to the inhibition of dynamic recovery 

process by suppression of cross slipping and this leads to the fast build-up of the critical dislocation 

density required for initiating twinning [21]. 

 

Table 2. Estimation of the Stacking Fault Energy γSFE. 

γSFE 

(mJ/m2) 1 cycle 3 cycles 6 cycles Reference 

Fe-36Ni 124.7 127.6 128.6 122 [17] 

Fe-48Ni 74.2 75.4 81.2 78 [17] 

 

For both alloys, the γSFE values seem to increase with increasing strain but this increase is not 

significant and lies within the relative error estimated to be ± 8 mJ/m2. In the author’s opinion, no 

systematic evolution of the stacking energy versus amount of straining should exist but only versus 

solute content. 
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4.  Conclusion 

• The Fe-36Ni and Fe-48 Ni (wt. %) alloys after ARB processing at 550 and 350 °C up to 6 cycles 

respectively, underwent a substantial grain refinement. Grains are of elongated shape parallel to the 

rolling direction and slightly smaller for Fe-48Ni alloy. 

• Both alloys exhibit a different texture evolution upon straining. The Fe-48Ni alloy developed a 

Rotated-cube component after 1 cycle and subsequently a domination of Copper component after 6 

cycles. While, the Fe-36Ni alloy developed a Brass component after 3 cycles and finally a Copper-

type texture after 6 cycles.  

• The microhardness of both alloys showed the same trends up to 6 cycles. That of Fe-48Ni alloy 

was higher than that of Fe-36Ni owing to its smaller stacking fault energy. 
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