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Abstract. Parameterizations of rotations in three-dimensional space are fundamental for
description of crystallographic textures. Such parameterizations (e.g., Rodrigues parameters)
are usually specified using orthonormal coordinate systems, whereas bases of crystal lattices
are generally non-orthogonal. In the case of crystals with hexagonal or rhombohedral lattices,
the reference frames involve redundant crystallographic axes, and hence a question arises about
feasibility of the generalization of the rotation parameterizations to such frames. The definition
of Rodrigues parameters can be extended so they are directly linked to non-Cartesian bases
of crystal lattices. The new Rodrigues parameters are contra- or covariant components of
vectors specified with respect to exactly the same lattice basis as atomic positions in a unit
cell. The generalized formalism allows for using redundant crystallographic axes. Also the
orientation matrices can be represented in such frames. The Rodrigues parameterization in
non-Cartesian coordinate frames is convenient for crystallographic applications because the
generalized parameters are directly related to indices of rotation-invariant lattice directions
and to Miller indices of rotation-invariant lattice planes. In the case of the hexagonal and
rhombohedral lattices, the frames with redundant axes are used to account for lattice symmetry,
but one may apply such frames for other reasons. They can be convenient for handling arbitrary
symmetries, in particular symmetries arising in description of some phenomena or symmetries of
physical processes. The practicality of frames is illustrated by an alternative description of body-
centered lattices, a formula for lattice rotation in deformation by slip, and a new interpretation
of indexing of single crystal diffraction patterns.

1. Introduction

Texture analysis relies heavily on the notions of reference frames and rotations in three-
dimensional space [1, 2]. The usual approach is to represent proper rotations by special
orthogonal matrices. Also rotation vectors are a commonly used representation. In particular,
the so-called Rodrigues vector is convenient in analysis of crystal misorientations.

Special orthogonal matrices and Rodrigues vectors are defined in reference to Cartesian
systems [1, 3]. On the other hand, bases of crystalline lattices are often non-orthogonal. Rotation
matrix formalism in non-orthogonal bases has been used in crystallography for a long time; cf.
[4]. The issue of referring Rodrigues vectors directly to oblique frames was considered only
recently in [5]. The latter paper describes a more general formalism which allows to deal with
rotations not only in arbitrary lattice bases comprised of linearly independent vectors but also
in frames with redundant crystallographic axes. This formalism encompasses the description
of rotations in the hexagonal and rhombohedral cases with four axes of the frame. It can be
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applied to any finite number (> 3) of axes, and it can be seen as a generalization of the classic
schemes of indexing of lattice planes and directions. The concept of indexing in systems with
redundant crystallographic axes has been considered before [6, 7, 8]. For complete understanding
of indexing in systems with redundant axes, one needs to establish a link between the frame
and its dual on one side, and the lattice and its reciprocal on the other, and this issue has been
clarified in [5]. The formalism relies on the equivalence between the indices of nodes of direct
and reciprocal lattices and contra- and co-variant vector coordinates [4, 9]. In particular, the
generalized Rodrigues parameters are defined as contra- or co-variant components of vectors in
the physical space of the crystal.

The paper illustrates some simple but quite different applications of the frames: these are a
symmetric description of body-centered lattices, a new formula for lattice rotation in deformation
by slip, and an original interpretation of ab initio indexing of single crystal diffraction patterns.
The nomenclature and notation of the paper are close to those of [5] and some chapters of the
International Tables for Crystallography [4, 9]. The summation convention is assumed, i.e., there
is a summation over each index which appears in a term twice, as a subscript and a superscript.
At the outset, the concepts of [5] are briefly reformulated so one can easily grasp the essence of
the formalism.

2. Rotations in three dimensions and frames
Rotation about n by the angle 6 is frequently represented by the matrix

R=gcosfd+n®n(l—cosh)+e-nsinb (1)

or Rodrigues vector r = ntan(f/2). Composition of rotations represented by matrices S and
P is represented by matrix product of P and S. Composition of rotations parametrized by
Rodrigues vectors p and s is given by pos = (p+ s+ p xs)/(1 —p-s). The vector w
resulting form the rotation of v by a rotation represented by matrix R and Rodrigues vector r
isw=R:v = (—r)ovor. These two representations are linked by

1

R=——
l4+r-r

(g(l—r-r)+2r®r+2e-r) and r=¢:R/(1+trR).

For small angle rotations R ~ g + €2, where € is linked to Rodrigues vector via 2 = 2¢-r
and r = € : 2/4. The formulas listed above are well known. They are usually interpreted in
Cartesian reference systems with g being the identity matrix and € representing the permutation
symbol. It is interesting, however, that they can also be considered in more general terms. First,
the vectors and tensors can be given in rectilinear non-orthonormal systems, in particular, in
a basis of a trigonal crystal lattice. Second, the above expressions can be applied using frames
with redundant axes. In particular, they are valid in the conventional four-axis frames used
for describing hexagonal and rhombohedral crystals. Clearly, this general approach requires a
proper interpretation of g and e.

2.1. Overcomplete basis sets
For our purpose, a frame is a set of M > 3 non-coplanar vectors a,,, where = 1,2,..., M, and
no two vectors are collinear. The metric tensor is defined as

Juv = a, - a, .

The rank of the corresponding matrix is 3. Let ¢g*¥ be the components of the Moore-Penrose
pseudoinverse [10] of the matrix [g,,]. The vectors

a’ = g"a,
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constitute the frame canonically dual to a,. They satisfy the relationships a* - a” = ¢g"” and
gwa” = a,. With g = a,-a” = g,,9”, one has g,/ = ¢",. The idempotent matrix
corresponding to g,” is equal to its pseudoinverse, its trace gil' equals 3, and there occurs

9ux9”, = g and g'%g” = gh”. Moreover, one has

gha” =a", guyav =ay . (2)

With M > 3, the decomposition of a given vector, say v, into linear combinations
vla, =v =y a’
of a, or a* is ambiguous. It is made unique by imposing the constraints
gt =v", glu = . (3)
With these conditions satisfied, one has
v=v-a', y,=v-a,,

14 4
gV’ = v, , g, = V.

This formalism belongs to the well developed theory of frames; see, e.g., [11] and references
therein. The principal applications of frames are in signal and image processing.

The frames of particular type described above (non-orthogonal overcomplete sets of vectors in
finite-dimensional inner-product space) can also be applied in crystallography. The redundancy
of frames has some advantages. First, frames improve computational robustness to random
errors as information is spread over a larger number of vector components. More importantly,
the redundancy of frames provides some flexibility; for instance, a frame can match a given
symmetry, as it is in the case of hexagonal and rhombohedral lattices. Finally, from the
crystallographic standpoint, the use of finite frames provides a panoramic view on indexing
of lattice planes and directions.

Going back to expressions opening this section and the description of rotations in frames,
the tensors g and e are shorthand symbols for the metric tensor and Levi-Civita tensor with
components €, = (a5 x a,) - a, and e = g"%ghPg e 5. = (a® x a*) - a”. For instance, the
explicit form of eq.(1) is R, = ¢/, cosf + ntn, (1 — cosf) + g"F €. on” sinh. The entries R",
satisfy the orthogonality conditions g,WR”uRp » = guw With the pseudodeterminant of [R",] equal
to +1. Similarly, for small angle rotations, one can write

Qv = 2€pr™ and 77 = €"7Q,, /4 . (4)

The explicit forms of other equations are available in [5]. They easily follow from the covariance
principle and mechanical positioning of sub- and super-scripts.

3. Frames and crystallographic lattices
The representations of rotations in frames can be used in various fields, but our considerations
are confined to the realm of classic crystallography in order to conform to the subject matter of
ICOTOM. In crystallographic applications, the bases of reference systems are directly linked
to crystal lattice bases. Also frames can be used for determining lattices. This has been
unknowingly done for a long time in the case of symmetry-based four-index schemes of Miller-
Bravais [12] and Weber [13].

The crucial point for using frames in description of a crystal lattice is to specify the link
between the frame vectors a,, and the lattice nodes. Clearly, not every frame naturally induces
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a lattice (as for some sets of vectors a,,, integer combinations of these vectors can be arbitrarily
close to each other), and it is easier to consider the link from the perspective of a given lattice.
Two types of the relationship between the lattice nodes and the vectors a,, are more natural
than other.

First, the standard or canonical case embodying the classic Miller-Bravais and Weber indexing
is based on the following rule: a,, are direct lattice vectors, and arbitrary integer combinations
of a, constitute the lattice. The integer coefficients may fail to satisfy conditions (3). The
lattice vectors, when expressed in the frame a, as ¢"a, with ¢" = ¢",¢", have rational (i.e.,
not necessarily integer) components ¢*. The above arrangement between the direct lattice
nodes and a, determines the relationship between the reciprocal lattice and the dual frame a*:
the reciprocal lattice consists of linear combinations of a* with integer coeflicients satisfying
conditions (3). One must be aware, however, that an arbitrary integer combination of a* may
not be a vector of the reciprocal lattice. In particular, the vector a* of the dual frame may not
be a vector of the reciprocal lattice.

Clearly, the above scheme is not the only possible. The other natural approach would be
to exchange the roles of the direct and the reciprocal lattices. In such a ’dual-canonical’ case,
the direct lattice vectors would be linear combinations of a,, with integer coefficients satisfying
egs.(3), and the reciprocal lattice vectors would be linear combinations of a* with arbitrary
integer coefficients.

In what follows, the canonical scheme is assumed. Clearly, a frame determines a lattice, and
the lattice can be based on numerous different frames. Classic lattice bases constitute particular
types of frames. Having a given lattice frame a,,, one can specify the lattice direction ¢"a,, using
the generalized Weber indices

¢ ¢® ... ¢M]

Similarily, the generalized Miller-Bravais indices
[k’lk’Q k‘M] OC(hk l)

specify the plane normal to the vector k,a*. Both ¢/ and k, are expected to satisfy egs.(3).

Now, assuming a crystal lattice is based on the frame a,, the Rodrigues parameters of a
rotation have a simple crystallographic interpretation. Since covariant vector components are
proportional to indices of a lattice plane, the covariant components 7, are proportional to
generalized Miller-Bravais indices (hk ... 1) of the rotation-invariant lattice plane. Similarly,
the contravariant components r# are proportional to generalized Weber indices [uwv ... w] of
the rotation-invariant lattice direction. Calculating the components of r in the reference system
constituting the lattice frame is a natural way to get indices of the rotation-invariant lattice
planes and directions in low-symmetry crystals.

4. Applications

With the use of frames, some old lattice-related issues can be viewed in a new light. Three
example applications are presented below. We begin with a note on using the tetrahedral frame
for describing body centered lattices.

4.1. Tetrahedral frame

Frames can be used to account for lattice centering in a ’symmetric’ manner. Take the simplest
case of the body-centered cubic (bce) lattice. It is naturally described using the ’tetrahedral’
frame. Let the vectors a,, (1 = 1,2,3,4) be related to the conventional orthonormal basis e by

a; = a(e;+exte3)/2, ag =a(ej—ex—e3)/2, a3 = a(—e;+ex—e3)/2, ag = a(—e; —ex+e3)/2;

()
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Figure 1. Schematic of body centered cubic lattice and the tetrahedral frame a,. The red and
blue vectors constitute the tetrahedral frame and the basis of the Cartesian reference system,
respectively. Indices of some lattice nodes in the tetrahedral frame are shown.

see Fig.1. Integer combinations of these vectors indicate nodes of a bcc lattice with the
conventional lattice parameter a.! The metric corresponding to the above frame is

guv/a* = a’gh = g =0y —1/4, (6)

and eqs.(3) take the explicit form v! + v? +v3 + vt = 0 = vy + vo + v3 + v4. With
the canonical approach, the direct lattice is built of all integer combinations of a,, but
the integer coefficients may violate conditions (3). For instance, the direct lattice node at
v = ae; + aey + aes can be expressed as the integer combination 2a; + 0as + 0az + Oay, but
the integer coefficients do not satisfy eqs.(3). The coordinates of v satisfying (3) are rational:
vV = (3/2)&1 — (1/2)&2 — (1/2)213 — (1/2)214.

The frame dual to (5) is given by a* = a,, /a®. The reciprocal lattice is built of combinations
of vectors a* with integer coefficients satisfying conditions (3). This lattice corresponds to
linear combinations of vectors e’ /a with integer coefficients such that their sum is even. Thus,
as expected, it is the face-centered cubic (fcc) lattice with the lattice parameter of 2/a.2 With
the four-index labeling of the reciprocal lattice nodes, there are no diffraction selection rules
(i.e., no centering-caused systematic extinctions); an arbitrary quadruple of integers summing
up to zero corresponds to a diffraction reflection and vice versa. For illustration, here are some
corresponding three- and four-index designations of reflecting planes:

Orthogonal basis ~ (000)  (002) (011) (112) (022) (013) (222

Tetrahedral frame (0000) (1111) (1100) (2110) (2200) (2211) (3111)°
The modification of the above considerations to body-centered tetragonal or body-centered
orthorhombic lattices is straightforward, and the indexing scheme of all three body-centered
cases is the same.

! Such reference system was discussed by Rogers and Klyne [14] in relation to tetrahedrally arranged bonds,
i.e., a network of atoms, not a crystal lattice. Moreover, the coordinates v* are related to but different from
tetrahedral coordinates used in applications of finite element method (e.g., [15], p.106).

2 If @ = 1, the frame a,, is self-dual (a” = a,,), but obviously the lattice is not self-reciprocal.
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4.2. Lattice rotation in deformation by slip

Frames can be applied to accommodate other symmetries. In particular, these can be symmetries
arising in characterization of phenomena. For instance, in description of orientation changes
during plastic deformation, convenient frames can be devised based on characteristic directions
and/or planes of slip or twinning systems. The tetrahedral frame (5) spans the Thompson
tetrahedron illustrating the fcc {111}(011) slip systems [16], and these slip systems could be
described using tetrahedral coordinates, but also other frames can be suitable.

Let us consider the general case without the limitation to the fcc lattice. Single slip results
in a rotation of the lattice around certain axis, and this axis identifies the slip system. The unit
vector along the axis will be taken as a,. The total rotation caused by slip on multiple systems
is given in the Cartesian reference frame by the well known formula (see, e.g., [17])

Q[J:ZM’YM (n‘;b‘j—b?n‘j) /2, (7)

where b} and nf are Cartesian components of the unit vectors along the slip direction and slip
plane normal, respectively, and * is the shear on the u-th system. The (small) angle of rotation
is v#/2. Based on eq.(4), the relationship (7) can be written in the form ;7 = 27757, where
P = 3 A A = (- eF) 4 = (ant/4) - e

are Cartesian components of the Rodrigues vector r = rey. The vector r can be expressed in
the frame a, as r = r#a,, with r* = r - a". Now, in this representation, equation (7) takes the
simple form?

=g /4 (8)
The components r# satisfy eqs.(3), whereas v* are unconstrained. With given shears v, one
can obtain the resultant rotation via r = r*a, = (¢',7"/4)a, = v"(a,g",)/4 = v*a, /4. This
relationship can be seen as a compact form of eq.(4) withr =€: /4 = 3" (v*/4)e: (nyxby,) =
y"a,/4 and a, =€ : (n, x b,); compare, e.g., eqs.(1-2) of [18]. The convenience of using frames
lies in the presence of g}, on the right hand side of eq.(8); by the properties of the pseudoinverse
[10], if the resultant rotation vector r is known, the shears are given by

7“:41-.&“_’_5/1‘7

where the terms &# satisfy ¢,V = 0, or ¢ = 2t — g%, 2¥ with x# being arbitrary numbers. In
the case of £# = 0, the shears v* = 4r - a* are optimally distributed over the slip systems in the
sense that > #(y“)Q is the smallest possible.

As a concrete example, let us consider the aforementioned case of fcc metals with slip on
{111} planes in (011) directions leading to rotations about (112) rotation axes. The frame
consists of twelve vectors

ap = [211a/2 ay = [211]e/2 a7 = [211]a/2 a;p = [211]a/2
a; = [121]a/2 a5 = [12T]a/2 as = [12Te/2 an = [121]a/2
ag = [112]a/2 ag = [112]a/2 a9 = [112]a/2 a9 = [112]a/2

with a = 2 x 671/2 so the vectors are of unit magnitude.* The tensors characterizing the frame

have the form
lo 11 Iy I3

1 lo I3 1
- — 27,10 v 0 3 2
Sym lo

3 This expression follows from r-a* = (rex)-a* = (a,-e®)(ex -a")(y"/4) = (a*-a,)(y”/4) and the definition
of g#,.
4 This frame is linked to the fcc (direct) lattice with lattice parameter a.
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Figure 2. Schematic two-dimensional illustration of the indexing problem. Given positions of
some (reciprocal) lattice nodes, determine the the parameters of the lattice, or given a frame
(red vectors a,,), get the (blue) vectors a and b of the lattice basis.

where
6 5 5 2 -1 —1 —4 -1 -3 —4 -3 -1
lo = 6 5|, h= —4 =3 |, b= 2 1 |,l3= —4 -1
Ssym 6 sym 4 Sym 4 Sym 2

With this [g"”], the dual frame is a# = a,/(6a*) = a, /4. Thus, the principal part (4r - a*) of
the shear on the p-th system is given simply by the scalar product of the rotation vector r and
the unit vector a, along the rotation axis of the system.

Clearly, other tensor quantities used for describing the slip-based deformation can also be
expressed using frames, but such broader considerations are beyond the scope of this short
communication.

4.8. Indexing of single crystal diffraction patterns

The ab initio indexing problem can be stated as follows: having measured positions of some
diffraction reflections, get the parameters of the crystal lattice, and ascribe Miller indices to
the reflections. One can formulate it more formally: having a number of vectors of the crystal
reciprocal lattice, determine the basis of the crystal lattice; see, e.g., [19] and references therein.
It is easy to notice that the input data (vectors of the reciprocal lattice) constitute a dual frame
(an overcomplete set of basis vectors), and the problem is to reduce this frame to a conventional
basis of the reciprocal lattice built of three linearly independent vectors; see Fig.2. This is similar
to the (Pohst) problem of computer science: given some lattice vectors which exceed in number
the space dimension, find a lattice basis made of short vectors, or in other words, given a frame,
find a basis made of short vectors. This problem is solved by a modified version of LLL lattice
reduction algorithm (sometimes referred to as MLLL) by Pohst [20]. With this solution, the
center of the indexing problem is shifted to accounting for experimental inaccuracies in input
data. This explicitely validates the frequently postulated property that indexing is simple for
accurate data.



18th International Conference on Textures of Materials ICOTOM-18) IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 375 (2018) 012027 doi:10.1088/1757-899X/375/1/012027

5. Final remarks

Summarizing, frames open an opportunity to take a new look at the subject of reference systems
and rotation parameterizations. Since the restrictions on the vectors a, are week, frames can
match various geometries. They allow for general but also very concise formulation of problems.
Therefore, one can expect numerous texture-related applications of frames. The most obvious
use is in crystallographic software involving plane and direction indices. This includes software
for analysis of orientation relationships, coincident lattices, slip systems, twinning systems et
cetera. The most basic advantage of using frames is that the four-index (Miller-Bravais + Weber)
system standardly used for crystals of the hexagonal family can be treated on an equal footing
with the three-index system used for other crystal families.
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