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Abstract. The paper investigates the manner in which the chemical composition and delivery 
status of a new type of stainless steel, highly alloyed with Ni and Cr, affect mechanical 
properties, microstructure and corrosion resistance. The results obtained during the mechanical 
test (tensile, compression, Charpy test and micro-hardness) have revealed promising values. 
During the corrosion test, the preferential attack of the reagent (Aqua regia) located on the 
grain boundaries, inclusions or polyhedral precipitates have been observed. On the corroded 
surfaces, some localized pitting effects on grain boundaries have been revealed. The analyses 
of the parameter values recorded during the corrosion test revealed that the corrosion current 
density had a low value, comparable to that of other specific types of stainless steels. The 
actual Icorr (1.089 µA/cm2) value measured for the experimental alloy proves good resistance to 
corrosion in 3% NaCl saline solution. The estimated rate of corrosion presented acceptable 
values (0.011 mm/year). 

1.  Introduction 
Austenitic microstructure refractory alloys, class X10NiCrAlTi 32-20, containing 32% Cr and 20% 
Ni, are currently used for the manufacture of components integrated in industrial equipment and plants 
operating in corrosive environments at high temperatures. 

The main requirements imposed on these alloys are related to their microstructural stability at high 
temperatures (creep resistance) and corrosion resistance [1]. 

There are currently known grades of similar refractory stainless steel (X 10 NiCrAlTi 32 20*/X 5 
NiCrAlTi 31 20**/X 10 NiCrAlTi 32 20 H***) - manufactured by specialized companies - serviceable 
in the best conditions up to temperatures of 500°C in humid corrosive environments. Similar alloys 
with high resistance to high stress, high temperatures and corrosive environments are manufactured on 
the specialized market under different trade names (Dicaloy, A286) used for turbine rotors, engines or 
chemical reactors components [2]. 

EN 14532-2 provides X10NiCrAlTi 32-21 and X0NiCrAlTi 32-21 (RK) as serviceable in the 600 - 
1000oC temperature range for up to 300000 hours of operation. Unfortunately, super-austenitic steels 
do not behave well at temperatures above 680oC, and nickel based super alloys  (Inco 617, INCOLOY 
800, 800T, 8000HT, Waspaloy) [3-7] are required for such applications. 

The Asian market can be considered the main competitor in the special steels market at global 
level. Some of the most famous manufacturers of special steels and super alloys are: SPECIAL Metals 
Corporation - USA; Bibus Metal - Switzerland; Santok Steel - India; Piyush Steel - India; Tools&Die 
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Steels - China; Aubert Duval-France. The first paragraph after a heading is not indented (Bodytext 
style). 

According to the Romanian National Institute of Statistics, the total annual steel consumption in 
Romania (an accurate indicator of the GDP evolution) in 2017 amounted to approx. 3.4 million tons, 
of which, the special alloys required amounted to approx. 40,000 t/year, quantity fully imported. 

The X10NiCrAlTi 32-20 refractory alloy manufactured in Romania is classified as stainless steel 
due to the very high Ni content (32.0 - 38.0%), although its chemical composition is very close to the 
one of a super alloy (Ni-based), taking from it not only the advantages (corrosion resistance, high 
working temperature etc.), but also the disadvantages, of which the most important are the low 
technological properties, thus creating great problems for obtaining desired quality parts. 

The high content of Cr (19 - 23%) also creates great problems during production and casting, 
requiring smart solutions for placing coolers in zones with high contractions and sections to ensure a 
low level of impurities (by refining and micro-alloying with the Ti, Al, Ce stabilizing elements). 

Since the main problem in the processing of this alloy is the loss of microstructural stability and the 
hot cracking [9, 10], elements such as Ti, Al and lanthanides (Ce) are added to the chemical 
composition in order to finish the granulation and limit the effects of precipitation of chromium 
carbides, causing the alloy to become brittle at high temperatures. 

The aggregate content of the micro alloying elements should be less than 0.8% (Al + Ti + Ce) in 
order not to generate additional hardening effects and to maintain the tenacity of the metal matrix. 

The aim of the paper is to present the results for the execution and testing of a new grade of 
refractory austenitic steel, highly alloyed with 32% Cr and 20% Ni and stabilized with titanium, in 
order to obtain parts which can be used in various niche fields in the industry. The development of the 
production technology combined with the casting technology for this steel grade will bring economic 
benefits and prestige to the manufacturer, IMA METAV, one of the few SMEs in Romania whose 
activity is the manufacture of castings made of special alloys. 

2.  Materials  
The experimental X10NiCrAlTi 32-20 refractory stainless steel were obtained in the RAV plant of 
IMA METAV, Bucharest. 

The chemical composition of the new austenitic refractory stainless steel was determined by optical 
emission spectrometry using the SpectromaXxM spectrometer and the Fe-30-M (Cr-Cr/Ni-steel – M) 
program. 

For inter-comparison, the chemical composition analysis was conducted by IMA-METAV as well, 
using the Fe-30 program, and the results are summarized in Table 1. 

 
Table 1. Chemical composition of X10NiCrAlTi 32-20, wt. %. 

C Si Mn Cr Ni Mo Al Cu Ti P S 
UPB 

0.104 1.09 0.42 19.98 32.28 0.453 0.432 0.160 0.175 0.014 0.0011 
IMA METAV 

0.094 1.22 0.689 19.0 31.69 0.435 0.46 0.191 0.151 0.018 0.012 

3.  Testing methods  
3.1.  Mechanical tests 
The tensile tests were carried out using the ”W+b” Walter+Bai AG traction/compression testing 
machine, using specimens taken from the cast melts, processed by milling (Figure 1). 

The results of the tensile test performed on a batch of 3 identical specimens are shown in Figure 2 
and Table 2. 

The elasticity modulus was determined by linear regression E = 104608.98±3946.2 Mpa. 
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Figure 1. Continuous tensile test specimen, 
dimensions: 9.54x3.99 mm and Lc=105 mm, 
before and after fracture. 

 

 
Figure 2. The tensile stress-strain diagrams: (a) global diagram; (b) proportionality zone for 0.25% 
proportional deformation. 
 

Table 2. The average values of mechanical characteristics for experimental refractory stainless steel. 

Material σe [MPa] σ0.2 [MPa] σmax [MPa] 
X10NiCrAlTi 32-20 260 450 601 

 
The compression test results are presented in Figure 3. 

 

 
Figure 3. Stress-strain diagrams for the compression test: (a) Stress-strain diagram; (b) Determination 
of the elastic limits value: 498MPa with 6.34% deformation. 
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The impact tensile test was conducted at ambient temperature (23 ºC. 45% humidity), using the 
W+b (Walter+Bai AG) testing machine. Four identical specimens, with small cross-section, were 
tested, and the results are shown in Figure 4 and Table 3, indicating the mixed-mode fracture 
(ductile/brittle) and the existence of sliding planes. 
 

 
Test 1 

 

 
Test 2 

 
Test 3 

 

 
Test 4 

Figure 4. Macroscopic appearance of impact fracture surfaces. 
 

Table 3. Absorbed energy values during the impact test. 

Sample 1 2 3 4 Average 
value 

Absorbed 
energy, J 14.4 11.1 8.9 9.9 11 

 
3.2.  Corrosion resistance assessment of stainless steel 
The corrosion resistance was determined using the linear polarization technique, consisting of the 
following steps: measurement of open circuit potential (EOC) over 6 hours; plotting the potential-
dynamic polarization curves from -1 V (vs OCP) to +1 V (vs SCE), at a 1 mV/s scan rate. The 
corrosion resistance evaluation tests were conducted using a potentiostat / galvanostat (PARSTAT 
4000 model, manufactured by Princeton Applied Research, USA), and the potential dynamic curves 
were acquired using the Versa Studio v.2.50.3 software. 

The tests were conducted using an electrochemical cell (Figure 5) consisting of a calomel saturated 
electrode (CSE) - a reference electrode, a platinum electrode - a recording electrode and a working 
electrode, represented by the stainless steel samples investigated. 

The surface of the samples was prepared before the tests were carried out by: grinding using 400- 
to 1000-grit metallographic papers, polishing with a particle suspension of Al2O3 with an average 
diameter of 1 μm. In order to ensure the electrical contact, the surface of the samples was coated with 
an epoxy resin and the surface exposed to corrosion was of approximately 1 cm2. 
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Figure 5. Electrochemical 
cell used in corrosion 
tests. 

 
The tests were conducted in 3.5% NaCl saline solution at 25 °C. Before the tests, the samples were 

immersed in electrolyte until the open circuit potential (OCP) stabilized. The open circuit potential 
variation (Eoc) of the stainless steel is shown in Figure 6, and the potential dynamic curve is shown in 
Figure 7. The polarisation resistance, used to characterise the corrosion resistance, was calculated 
using the parameters determined by the Tafel technique. The main parameters of the electrochemical 
corrosion process are presented in Table 4. 
 

Table 4. The main parameters of the corrosion process. 

Material Eoc (mV) Ecor 
(mV) 

icor 
(µA/cm2) 

βc (mV) βa (mV) Rp 
(kΩxcm2) 

CR 
(mm/year) 

Stainless 
steel 

-179 -369 1.089 103.13 1333 38.21 0,011 

 

 
Figure 6. The evolution of the open circuit potential (Eoc). 
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Figure 7. The potential dynamic curve of experimental stainless steel. 

 
The analysis of recorded and calculated parameters reveals that the corrosion current density is low 

and close to other types of stainless steel. This icor (1.089 µA/cm2) value of the material being 
investigated gives it good resistance to corrosion in 3% NaCl saline solution.  

Furthermore, in terms of corrosion rate, there can be seen that it has acceptable values (0.011 
mm/year), but account must be taken of the operating mode and the application.  

The variation of the potential in open circuit reveals its evolution to more electro-positive potentials 
(passivation), but with periods when the potential decreases strongly (the protective oxide layer on the 
surface deteriorates), followed by re-passivation.  

The shape of the potential dynamic curve reveals in the cathodic curve a passivation trend between 
- 300 mV and 0 V with a small variation in the density of the corrosion current followed by a decrease 
in the current density, which indicates sensitivity to pitting. 

 
3.3.  Metallographic analysis 
The samples selected for the metallographic analysis were sanded using abrasive paper (600-1000 
grain size) and then polished with fine Al2O3 abrasive powder, 1.0 to 0.25μm grain size. 

Sample surfaces were ultrasonically degreased for 30 minutes in ethanol then chemically attacked 
with metallographic reagent (Aqua regia) and subjected to metallographic analysis (Figure 8).  

The microstructural aspects highlighted by metallographic analysis indicate the dendritic 
microstructure, with pitting effects, as a result of the preferential attack of the chemical reagent on the 
grain boundaries.  

There can also be noted the intra-granular separation of polyhedral inclusions and precipitations.  
The fracture surfaces reveal the presence of polygonal inclusions and sliding or flattening planes, 

alternating with cup-type ductile fracture zones. 
The metal matrix micro hardness was measured using a Shimadzu HMV 2T micro hardness tester, 

in longitudinal section (198 HV1) and in cross section (194 HV1). 
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Figure 8. Microstructural aspects of experimental refractory stainless steel; (a), (b) dendritic 
microstructure and precipitation of inter-metallic compounds (optical micrograph); (c), (d) Fracture 
surfaces: flattening and sliding planes (P) alternating with cup-type ductile fracture zones (D) and 
polygonal inclusions (I) (SEM micrograph). 

4.  Conclusions  
The microstructural results are in good agreement with the impact fracture behaviour, the values 
obtained being inferior to a steel of the same alloying class, but in laminated state. 

The hardness values determined by the Vickers method fall within the usual limits for the steel 
class of the analysed experimental material (200HV), with no significant differences between the 
values determined in cross section or longitudinally, attesting the homogeneity of the metal matrix. 

The compression test behaviour of the analysed alloy is satisfactory, the value of the longitudinal 
elasticity coefficient being of maximum 9855.99 ± 37.17MPa and the value of the elastic limit being 
498MPa. The fracture energy values fall within the margin of medium resistance steels. 

The analysis of the results obtained in the corrosion tests reveals that the density of the corrosion 
current has a low value, close to the one of other types of stainless steel (icorr = 1.089 µA/cm2), giving 
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it good corrosion resistance in 3% NaCl saline solution. In terms of corrosion rate, the experimental 
steel features acceptable values (0.011 mm/year). 
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