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Abstract. An exact, closed-form solution for the postbuckling responses of graded porous 

beams subjected to axially loading is obtained. It was assumed that the properties of the graded 

porous materials vary continuously through thickness of the beams, the equations governing 

the axial and transverse deformations are derived based on the classical beam theory and the 

physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-

order integral-differential equation governing the transverse deformations. The nonlinear 

equation is directly solved without any use of approximation and a closed-form solution for 

postbuckled deformation is obtained as a function of the applied load. The exact solutions 

explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to 

provide insight into deformation problems. Based on the exact solutions obtained herein, the 

effects of various factors such as porosity distribution pattern, porosity coefficient and 

boundary conditions on postbuckling behavior of graded porous beams have been investigated.  

1.  Introduction 

The present study is devoted to find the exact solution for postbuckling behavior of graded porous 

beams under the axial compressive load. Since the overwhelming majority of the nonlinear governing 

equations for large deflection problems are not soluble analytically, it is not easy to find an exact 

solution to the nonlinear equations for large deflection beams. Only a few exact solutions have been 

presented up to the present time. However, in the wake of developments in science and technology, 

the accurate prediction of the postbuckling behavior of beams is an area of concern. 

Graded porous materials are a class of lightweight materials in which a change in their material 

properties is continuous, that is, these properties change with changes in position along one or more 

directions of the structure to attain a needed purpose. Due to their unique advantages, the application 

of structures made of graded porous materials is extensive covers a wide range of aerospace, civil and 

mechanical fields. Therefore, emerging applications of graded porous materials have led to many 

conducted researches regarding the mechanical behavior of these materials in the past two decades. 

Magnucki and Stasiewicz [1] explicitly obtained the critical buckling load of a porous beam subjected 

to the axial compressive load. Jasion and Magnucka-Blandzi [2] investigated the global and local 

buckling of sandwich metal foam circular plates and beams and the critical buckling loads for these 

structures were presented and compared with those obtained by other methods. Magnucka-Blandzi and 

Magnucki [3] gave some optimal parameters in the effective design for a sandwich metal foam beam 

and the mass and critical load of the beam were considered at the same time in the analysis. Chen et al 

[4] studied the elastic buckling and bending problems for functionally graded porous beams based on 

shear deformation theory, two porosity distributions were considered in the analysis. The elastic 

buckling of the aluminum foam beams was investigated by Grygorowicz et al [5] and the formula was 
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proposed to describe the critical buckling load of the beams. Ebrahimi and Zia [6] used the Galerkin's 

method to investigate large amplitude vibration of a functionally graded porous beam. Recently, Barati 

and Zenkour [7] examined the postbuckling behavior of grapheme platelet reinforced porous beams 

and two distributions of grapheme platelets were considered in the analysis. Kitipornchai et al [8] 

investigated the elastic buckling and free vibration of grapheme platelet reinforced porous beam. The 

nonlinear vibration and postbuckling responses for grapheme platelet reinforced porous beams made 

of functionally graded materials were investigated by Chen et al [9] Shafiei and Kazemi [10] studied 

the nonlinear buckling behavior of micro- and nano-beams made of functionally graded porous 

material. 

As the aforementioned works show, there are few literatures concerning with an exact solution for 

postbuckling responses of graded porous beams. Motivated by this consideration, in this study, 

postbuckling of the classical graded porous beams is investigated. Ma and Lee [11] proposed an exact 

solution of the postbuckling or bending responses for functionally graded beams and the solution is a 

function related to the applied load. In the present analysis, their work is extended to the graded 

porous beams. 

In this study, using the physical neutral surface concept, governing equations for the postbuckling 

response of graded porous beams under axial compressive load are derived based on classical beam 

theory. The nonlinear equations of equilibrium can be simplified to a single fourth order integral 

differential equation expressed in term of transverse deformation. The nonlinear equation can be 

exactly solved, then an exact closed-form solution of the postbuckled configuration is obtained and it 

is a function related to the axial compressive load. The explicit exact solutions describe the nonlinear 

buckled paths of the beam and would give ones new insights into these deformation problems. Using 

the exact solutions, effects of porosity distribution pattern and porosity coefficient on postbuckling 

responses of graded porous beams have been studied.  

2.  Basic equations 

Consider a graded porous material beam with a rectangular cross-section of area A, height h, and 

length l as shown in figure 1. The origin of the Cartesian coordinate system, (x, y, z), is at the left end 

of the beam in present study. The xoy plane is placed in the undeformed midplane of the beam, the x 

axis is coincident with the centrically axis of the beam, the z axis is perpendicular to the x-y plane and 

positive direction of the z axis is the one towards the thickness of the cross-section. 
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Figure 1. Geometry and coordinates of a beam. 

 

Suppose the mechanical properties of the porous materials vary along the thickness direction of 

beams. Young’s modulus of the porous materials changes according to the two functions, respectively, 

as follows [12]. 

 ( ) ( )1 01 cosE z E e z h=  −                                                              (1) 

and 
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 ( ) ( )1 01 cos 2 4E z E e z h = − +                                                         (2) 

where, e0 is the porosity coefficient of the beams, e0=1-E0/E1, E1 denotes Young’s modulus of 

homogeneous materials beams and is also the maximum value of Young’s modulus for the graded 

porous beams which exist on the upper and lower surfaces corresponding to symmetrical porosity 

distribution, that is, equation (1), and on the top surface corresponding to asymmetrical porosity 

distribution, i.e., equation (2), E0 the minimum value on the midplane for symmetrical porosity 

distribution and on the bottom plane for asymmetrical porosity distribution. The shear modulus 

G(z)=E(z)/[2(1+ν)], here ν is Poisson’s ratio and suppose Poisson’s ratio is constant along the beam 

thickness. Figure 2 shows several variation curves of the Young’s modulus along thickness of the 

beam for several values of e0, (a): symmetrical porosity distribution, (b): asymmetric porosity 

distribution. 
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Figure 2. Variations of the Young’s modulus along thickness of the beam for several values of e0. 

 

When a coordinate system is placed in physical neutral surface of a graded porous beam [13], the 

term of stretching and bending coupling does not appear in constitutive equations of the beam and this 

concept can be used to simplify basic equations of the graded porous beam. The physical neutral 

surface of graded porous beams is represented by z =z0. 

 ( )
1

2 2

0
2 2

( )d ( )d
h h

h h
z zE z z E z z

−

− −
=  

                                                     (3) 

Therefore, for symmetrical porosity distribution,
0 0z = , and for asymmetric porosity distribution, 

( ) ( )2

0 0 04 1 1 2z he e  = − − . It is obvious that the physical neutral surface is coincident with the 

geometric midplane for a homogeneous beam or a graded porous beam with symmetrical porosity 

distribution. 

Make use of the physical neutral surface concept and the classical beam theory (CBT), the 

displacements can be written in the following form 

( )0

d
( , ) ( )

d
x

w
U x z u x z z

x
= − −  

(4) 

( , ) ( )zU x z w x=  

Here, u and w are the displacements of the physical neutral surface along x and z, respectively. Axial 

strain is as follows. 
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 ( ) ( )
2 2

0 1

0 0 2

d 1 d d

d 2 d d

  
= − − = + − −  

   
x x x

u w w
z z z z

x x x
                                          (5) 

In the above, 0

x  and 1

x  are the strain and curvature in the physical neutral surface, respectively. 

The constitutive relations are expressed as 

2

0 1 d 1 d

d 2 d

  
= = + = +  

   
x x x x x x x

A

u w
N dA A B A

x x
  

 
(6) 

( )
2

0 1

0 2

d

d
= − = − = −x x x x x x x

A

w
M z z dA B D D

x
    

Here, ( )dx
A

A E z A=  , ( ) ( )0 d 0x
A

B z z E z A= − = , ( )
2

0 ( )dx
A

D z z E z A= − . 

It is obvious that the term of stretching and bending coupling does not appear in equations (6) 

based on the physical neutral surface theory.  

Through the application of energy principle, the equilibrium equations and boundary conditions 

can be derived as followed based on CBT. 

 2
d d 1 d

0
d d 2 d

x

u w
A

x x x

    
+ =   

     

                                                           (7) 

 

24 2

4 2

d d 1 d d
0

d d 2 d d
x x

w u w w
D A

x x x x

  
− + + =  

   
                                                    (8) 

 0w = and d
0

d
=

w

x

 for a clamped end, 0w = and
2

2

d
0

d
=

w

x

 for a hinged end                        (9) 

The boundary conditions of the axial displacement u can be expressed as 

 u(0)=0 and ( ) xu l pl A= −                                                                 (10) 

where, p is an axial compressive load. 

3.  Solution 

Integrating equation (7) twice, one obtains: 

 

2

1
2

0

1 d
d

2 d

x

x

Cw
u x C

A




 
= − + + 

 





                                                           (11) 

Using the boundary conditions for the axial displacement, one can obtain: 

 2

1

0

d
d

2 d

l

xA w
C x p

l x

 
= − 

 





, 2 0C =                                                          (12) 

The substitution of equations (11) and (12) into equation (8) leads to: 

 24 2

4 2

0

d d d
d 0

d 2 d d

l

x
x

Aw w w
D x p

x l x x

  
− + − =  

   





                                                (13) 
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Equation (13) is the geometrically nonlinear governing equation of a graded porous beam and in 

the equation, the midplane stretching is taken account of. 

The dimensionless variables are defined as follows  

,x l W w h = = , 
2

1 x xF A h D= , 
2

xP pl D= ,
2

0 0P pl D=  

where 2

0 1d
A

D z E A=  . Hence equation (13) can be transformed into the one in dimensionless form: 

 4 2
2

4 2

d d
0

d d

W W


 
+ =

                                                                 (14) 

where λ2 is defined by 

 

1 2

2 1

0

d
d

2 d

F W
P 



 
= −  

 





                                                            (15) 

The boundary conditions (9) can be written as  

( ) ( )0 1 0W W= =  and 
( ) ( )d 0 d 1

0
d d

W W

 
= =  for a beam with clamped ends 

(16) 

( ) ( )0 1 0W W= =  and 
( ) ( )2 2

2 2

d 0 d 1
0

d d

W W

 
= =  for a simply supported beam 

For any given deformed configuration W(), the integral of W() in equations (14) and (15) is 

constant, and so a closed form solution for the deformed configuration may be obtained. The closed 

form solution for the deformed configuration of beams is given by 

( ) ( ) ( )
1 cos

sin cos 1
sin

W a


   
 

− 
=  −  − +  − 

 for a beam with clamped ends             (17) 

( ) ( )sinW a =  for a beam with simply supported ends                                  (18) 

Here, a is a constant associated with the axial compressive load P and can be expressed as: 

 

1 2

2

1

2
1

P
a

F 

 
=  − 

 
                                                                 (19) 

The characteristic equation for   of beams is given by: 

 2 2cos sin 0  − − =  for a beam with clamped ends                                   (20) 

 sin 0 =  for a beam with simply supported ends                                        (21) 

In the early part of buckling, configuration of a buckled beam is extremely approximate to original 

straight state of the beam. At the present moment, the axially load P0 is exactly the critical buckling 

load 0crP that can be obtained from equation (19) by letting a =0, 

 
2

0 1 0=cr eP C                                                                     (22) 

where
0eC is a constant related to the porosity coefficient, e0, and 

1  denotes the lowest eigenvalue in 

equation (20) or (21). When e0 = 0, the dimensionless critical buckling load of a homogeneous beam is 
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obtained, that is, 2

0 4crP =  for a clamped beam at two ends, 2

0crP =  for a simply supported beam at 

two ends, which are identical to the solution obtained by Ma and Lee [11]. 

The variations of the dimensionless critical buckling load 0crP  with the porosity coefficient e0 are 

given in figure 3. The solid and dashed lines indicate the results of beams with symmetric and 

asymmetric porosity distribution, respectively. It is seen from figure 3 that as the porosity coefficient 

e0 increases, the critical buckling load decreases. Such a trend is observed because an increase in e0 

results in a decrease in the Young’s modulus of graded porous beams. 
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Figure 3. Variation curves of 0crP vs e0. (a): a clamped beam, (b): a simply supported beam. 

 

The typical post-buckling paths of graded porous beams are shown in figure 4. The solid and 

dashed lines indicate the results of beams with symmetric and asymmetric porosity distribution, 

respectively. As expected, in figure 4, the variation curves of the post-buckling deflection with axial 

compressive load for graded porous beams are quite similar to those for pure material beams. 
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Figure 4. Post-buckling paths of a graded porous beam. (a): a clamped beam, (b): a simply supported 

beam. 

4.  Conclusion 

An exact solution of the postbuckling responses of graded porous beams under the axial compressive 

load is obtained. The postbuckled configuration of beams was expressed as a function related to axial 

compressive load. The nonlinear equilibrium paths of the postbuckled beams can be described 

explicitly by the exact solutions and thus the exact solutions would give ones new insights into 
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deformation problems and can be used as a standard with which various approximate theories and 

numerical methods can be verified and improved. One can arrive at some conclusions as followed. 

⚫ Under axial compressive load, clamped and simple supported porous beams, in the case of 

both symmetrical and asymmetric porosity distribution, all exhibit typical bifurcation buckling 

behavior. 

⚫ As the porosity coefficient increases, the critical buckling load decreases, which becomes 

more pronounced for the case of asymmetric porosity distribution. 
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