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Abstract. The austenitic stainless steels have been widely utilized as a structural component and 

member as well as a die and mold substrate for stamping.  AISI316 dies and molds require for 

the surface treatment to accommodate the sufficient hardness and wear resistance to them.  In 

addition, the candidate treatment methods must be free from toxicity, energy consumption and 

inefficiency. The low temperature plasma nitriding process has become one of the most 

promising methods to make solid-solution hardening by the nitrogen super-saturation.  In the 

present paper, the high density RF/DC plasma nitriding process was applied to form the uniform 

nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding 

in this low temperature nitriding process.  In case of the nitrided AISI316 at 673 K for 14.4ks, 

the nitrided layer thickness became 60 m with the surface hardness of 1700 HV and the surface 

nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic 

interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, 

the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion.  As 

far as this interrelation is sustained during the nitriding process, the original austenitic 

microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 m 

and the high crystallographic misorientation angles and to have two phase ( + ’) structures 

with the plateau of nitrogen content by 5 mass%.  Once this interrelation does not work anymore, 

the homogeneous microstructure changed itself to the heterogeneous one.  The plastic straining 

took place in the selected coarse grains; they were partially refined into subgrains.  This plastic 

localization accompanied the localized phase transformation. 

1.  Introduction 

High nitrogen stainless steels (HNS) have been developed to save the nickel resource and to improve 

the corrosion and wear resistance in practice [1].  Even at present, the maximum nitrogen solubility in 

these steels is still limited by 1 mass% [2].  High nitrogen concentration becomes an engineering issue 

to advance the steps of HNS research.  On the other hand, the plasma nitriding has been also utilized as 

one of the most feasible surface treatments to massive surface treatment [3].  In case of the conventional 

plasma nitriding at higher temperature than 723 K, iron and chromium nitrides are inevitably synthesized 

as a precipitate to form the fragile white layer.  A complete nitrogen diffusing zone with the sufficient 

nitrided layer thickness and hardness is difficult to form by those processing in practice.   

The low temperature plasma nitriding has been highlighted to make nitrogen super-saturation into 

the stainless steels and chromium based binary alloys without formation of iron and chromium nitrides 

even at 673 K in [4-6].  In particular, both the austenitic and martensitic stainless steels were efficiently 
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nitrided at 673 K to have thick nitrided layer up to 80 m and to have high nitrogen solubility up to 10 

mass% after [6]. Those studies stated that both -phase and ’-phase lattices were significantly expanded 

by this nitrogen super-saturation into lattices and that phase transformation from - to ’-phases and 

from ’- to -phases was driven by this lattice expansion.  In the recent works on the low temperature 

plasma nitrided AISI304, AISI316, and AISI420 stainless steels, the microstructure was also modified 

by this nitrogen super-saturation in [7-9].  The average grain size of 9 m in the bare martensitic stainless 

steels was refined down to 0.1 m or less than, by the high density plasma nitriding at 673 K.  The 

similar grain size refinement also took place in the austenitic stainless steels even for the plasma nitrided 

AISI304 at 673 K.  In addition, once the original -phase expanded to N-phase with occupation of 

nitrogen solute atoms into vacancy sites in the fcc-structured lattices, the highly nitrogen super-saturated 

AISI316 was modified into the two phase stainless steels with the N-phase and its transformed ’-phase.   

In the present paper, the inner nitriding processing at the lower temperature is precisely analyzed to 

describe the nitriding mechanism by the nitrogen super-saturation.  The synergetic interrelation is 

thought to drive this low temperature plasma nitriding among the nitrogen super-saturation, the -lattice 

expansion, the phase transformation, the plastic straining, the microstructure refinement and the 

enhancement of nitrogen diffusion processes.  AISI316 austenitic stainless steels are employed as a test-

piece to experimentally describe these two inner nitriding modes at 673 K; i.e., homogeneous and 

heterogeneous nitriding processes.  Each process is experimentally defined to characterize its feature 

and to discuss the driving mechanism. 

  

2.  Experimental procedure 

2.1.  High density low temperature plasma nitriding system 

The present plasma nitriding system consists of the vacuum chamber, the evacuation system, the DC-

RF generators working in the frequency of 2 MHz, the gas supply of N2 and H2, and, the heating unit 

located under the cathode plate as illustrated in figure 1.   

 

 

Figure 1. High density RF/DC plasma nitriding system, (a) Outlook of system and (b) System diagram. 

 

The hollow cathode device is utilized to confine the RF-ignited nitrogen- and hydrogen plasmas and 

to have higher ion and electron densities than those in the standard nitriding process. The maximum 

nitrogen ion density reached to 3 x 1017 ions/m3, which is equivalent to that by the electron beam assisted 

plasma nitriding in low pressure in [10]. 

b)a)
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In the present experimental set-up, the specimen was placed and fixed in the electrically conductive 

hollow, which was connected to the DC-bias. The nitrogen and hydrogen mixed gas was supplied from 

the either inlet of hollow. After placing the sample in the hollow cathode setup, the chamber was 

evacuated down to 0.5 Pa in pressure, and, then filled with the nitrogen gas with the flow rate of 160 

ml/min until the pressure was constant by 300 Pa before heating up to the specified holding temperature. 

Next, the sample was pre-sputtered for 1.8 ks to remove any oxide passive layer from its surfaces. This 

pre-sputtering process operated by using the DC discharge of 350 V in pure nitrogen gas by 60 Pa. After 

pre-sputtering, it was plasma nitrided for 14.4 ks or four hours at the holding temperature of 673 K (or 

400oC) by 70 Pa in pressure. The mixture of nitrogen and hydrogen gasses was provided to have the 

ratio of 160 ml/min for nitrogen and 30 ml/min for hydrogen. After the nitriding process, the sample 

was cooled in the vacuum chamber to minimize the possibility of surface contamination. 

2.2.  Preparation of samples 

The austenitic stainless steel type AISI316 plate with the size of 20 x 40 x 2 mm3 were employed as a 

substrate after heat treatment at 833 K for qualification of grains.  Its chemical compositions are: [C] = 

0.08 mass%, [Si] = 1.00 mass%, [Mn] = 2.00 mass%, [P] < 0.045 mass%, [S] < 0.030 mass%, [Ni] = 

12.0 mass%, [Cr] = 17.0 mass%, and [Mo] = 2.5 mass% for iron in balance.  Both sample surfaces were 

mirror-polished and cleaned by the ultrasonic cleaner before plasma nitriding.    

2.3.  Measurement and observation 

The nitrided specimens were analyzed by the X-ray diffractometer (XRD; Rigaku SmartLab), SEM 

(Scanning Electron Microscope; HITACHI SU-70), and, EDX (Electron Dispersive X-ray spectroscopy) 

were utilized for material characterization from the surface down to the specified depth.  EBSD (Electron 

Back-Scattering Diffraction) was also used to analyze the microstructure refinement, the phase 

transformation and the plastic straining.  The inverse pole figure was utilized to describe the crystalline 

structure.  The phase mapping was performed to understand the phase distributions from the surface to 

the depth.  The KAM (Kernel Average Misorientation) was also used to represent the intergranular 

misorientations among the neighboring grains.  Hardness depth profile was measured on the cross-

sections by the microhardness testing apparatus (Mitsutoyo HM-200) with the load of 50 g or 0.5 N in 

every 10 µm in depth, respectively.    

3.  Experimental results and discussion 

AISI316 specimens are nitrided at 673 K for 14.4 ks to describe the difference between the homogeneous 

and heterogeneous nitriding processes.  EDX is utilized to investigate the nitrogen content distribution 

from the surface to the depth (d) of the nitrided AISI316 plates at 673 K. As shown in Fig. 2, this depth 

profile consists of two sections; e.g., high nitrogen layer (HNL) and low nitrogen layer (LNL). The 

nitrogen content is kept nearly constant by [N] = 4 to 5 mass% in HNL; [N] becomes higher to be 6 

mass% at the vicinity of surface.  This nitrogen content plateau ranges from the surface to the depth of 

d = 60 m at 673 K.  The nitrogen content decreases across the border between HNL and LNL; e.g., [N] 

= 4 mass% at d = 60 m decreases down to [N] = 0.8 mass% at d = 80 m.  This high nitrogen 

concentration both in HNL and LNL proves that the -lattice in AISI316 is super-saturated by nitrogen 

solutes.   

In the conventional plasma nitriding, the nitrogen solute content decreases exponentially from the 

maximum nitrogen content of 0.1 to 0.2 mass% at the surface toward the nitriding front end, as reported 

in [11]. No plateau with constant nitrogen content was observed in the nitrogen depth profile. This 

implies that the inner nitriding process at 673 K is governed not only by the nitrogen diffusion but also 

the nitrogen super-saturation process. 

This structural change of -lattices by the nitrogen super-saturation is analyzed by XRD analysis. 

Figure 3 shows the XRD diagrams for the nitrided AISI316 plates at 673 K.  The original -phase peaks 

for (111) and (200) lattice planes shifted to the lower 2 angles. The original fcc-structured lattice 

expands by the nitrogen super-saturation.  This expanded -phase (N) lattices are detected in figure 3 as 
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N (111) and N (200) in correspondence to  (111) and  (200), respectively. Besides for these two -

phase peak shifts, a new peak was detected at 2 = 44o in figure 3. This corresponds to the ’-phase for 

(110). This suggests that N to ’ phase transformation takes place together with the nitrogen super-

saturation. 

 

 

Figure 2. Nitrogen content depth profiles analyzed by EDX for the 

nitrided AISI316 plates at 673 K. 

 

 

Figure 3. XRD analysis of the nitrided AISI316 plates at 673 K and 623 

K as well as the bare plate. 

 

Figure 4 depicts the KAM distribution, the phase mapping and the inverse pole figure in the normal 

axis on the cross-section of the nitrided AISI316 at 673 K. KAM represents the equivalent plastic 

straining state of materials after [12]. In the absence of plastic strains, the misorientation angle between 

the adjacent grains becomes zero; while this KAM increases with increasing the equivalent plastic 

strains.  The plastic straining takes place homogeneously with high KAM in HNL for d < 60 m at 673 

K.  This homogeneous KAM distribution implies that the plastic strains are uniformly induced to 

compensate the strain incompatibility between the nitrogen unsaturated and saturated lattices.  In fact, 

the highly plastic strained region is neighbouring to the phase-transformed one, as shown in Figs. 4 a) 

and b).  The surrounding regions around the phase-transformed zone with high elastic strains are 

plastically strained to drive the microstructure refinement.  Fine distribution of the expanded -phase 

and the transformed ’-phase in this layer reveals that the phase transformation also advances uniformly 

in the depth.  

The inverse pole figures in the normal direction for the nitrided AISI316 at 673 K is shown in figure 

4(c). The original coarse grains of 10 to 20 m are completely refined to sub-micro meter sized grains 

or nearly down to 0.1 m, which is equivalent to the spatial resolution in the present EBSD analysis. In 
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addition, each refined grain has a random crystallographic orientation. This uniform KAM distribution, 

fine distribution of mixed two (, ’)-phases and refined grains with random orientation from the surface 

to the depth of 60 m, drives this homogeneous inner nitriding.     

 

 

Figure 4. EBSD analysis results of the nitrided AISI316 at 673 K. (a) KAM 

distribution, (b) Phase mapping, and (c) Inverse pole figure in the normal axis. 

 

As shown in figure 2, not only this HNL layer for 0 < d < 60 m but also the LNL for d > 60 m is 

nitrogen super-saturated since the nitrogen solute content is measured to be 4 mass% at d = 60 m. 

However, KAM distribution, phase mapping and IPF-profile are uniform in the range of 0 < d < 60 m 

while they are heterogeneous below d = 60 m in Fig. 4.  

The plastic straining locally takes place even in the LNL for d > 60 m as shown in figure 4(a). In 

particular, many slip-lines by plastic straining penetrate through the grain-A and along the grain 

boundary (GB) - B. In figure 4(b), the expanded -phase transformed to ’-phase in part of this grain-A 

and at this GB-B. This selective plastic straining and phase transformation implies that the nitrogen 

diffuses through the grain-A and along the GB-B and that the grains and grain boundaries at the vicinity 

of grain-A and GB-B are only nitrogen super saturated. In fact, microstructure is also modified locally 

around the grain-A and GB-B.   

This change in Fig. 4 from homogeneous nitriding mode to heterogeneous nitriding one at d = 60 

m, proves that there is a critical process to control the inner nitriding at 673 K.  Since nitrogen super-

saturation advances across the border at d = 60 m in Fig. 2, the nitrogen diffusion process triggers this 

difference.  The homogeneous nitriding is accommodated by the nitrogen diffusion paths through the 

grain boundaries of fine grains and the ’-phase lattices for d < 60 m.  These nitrogen diffusion is 

localized to the limited grains and grain boundary at d = 60 m; the homogeneous nitriding turns to be 

heterogeneous for d > 60 m.  As discussed in [8, 13-14], the synergetic interrelation among the nitrogen 

super-saturation, the -lattice expansion, the lattice elastic straining, the phase transformation, the plastic 

straining, the microstructure refinement and the nitrogen diffusion, works simultaneously; then, the 

homogeneous nitriding process is sustained into the depth of matrix.  Once the nitrogen diffusion process 

is locked, each constituent process in this interrelation is forced to localize and result in the 

heterogeneous nitriding.   
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4.  Conclusion 

The low temperature plasma nitriding of stainless steels works as a method to make surface hardening 

and nitrogen super-saturation in the austenitic stainless steels.  AISI316 stainless steels are nitrided at 

673 K for 14.4 ks to describe this hardening and nitriding processes.  Under the homogeneous nitriding, 

the nitrogen content becomes constant by 5 mass% till the end of nitriding front end, both the N-phase 

and ’-phase are homogeneously formed with fine mixture of two phases, and, the intense plastic 

straining is induced to make microstructure refinement with the reduction of grain size down to 0.1 m.  

This homogeneously nitrided layer has high hardness; e.g., 1700 HV at the surface and 1200 HV at d = 

60 m.  This homogeneous nitriding turns to be heterogeneous across this border at d = 60 m.  This is 

because the nitrogen diffusion process is localized to penetrate through the selected grains and grain 

boundaries into the further depth of matrix.  Hence, the total nitriding process is first driven by the 

heterogeneous nitriding and followed by the homogeneous nitriding with uniform plastic straining, fine 

phase transformation and microstructure refinement.    
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