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Abstract. The article is about the analytical method of calculation a ramp in the form of 

developable helicoid on the support draft. The asymptotic method of small parameter is applied 

to solve the system of three differential equilibrium equations for developable helicoid stress-

strain.  The numerical results of displacements and bending moments are verified and coincide 

with engineering practice. The suggested approach can be extended for calculation of torso-

helicoids with other boundary conditions. 

1. Introduction 

According to [1] the helical ruled surfaces may be divided into five types: oblique helicoids; right 

helicoids (a particular case of oblique helicoids, when inclination angle of a generatrix is equal to 

zero); developable helicoids; convolute helicoids; pseudo-developable helicoids (or right convolute 

helicoid that is a particular case of convolute helicoid). Developable helicoids can also be called 

evolvent helicoids, for example in [2], or torso-helicoids, for example in [3], or involute helicoids [4].  

Developable helicoids are mostly used in mechanical engineering in metal elements of small sizes [5], 

[6], where plastic deformations are needed to be taken into account [7]; however, they can also be 

successfully used in architecture and civil engineering for designing ramps, helical elements, helical 

parts of car interchanges, geometric models of embankment slopes when the road is raised and 

rounded (as a surface of the equal slope) [8]; and even as parts of the whole buildings, as it was done 

in the building of the famous Guggenheim’s museum of modern art in New York (USA) by an 

architect Frank Lloyd Wright [9]. 

In this paper, there is an attempt to solve a particular practical task by the means of analytical methods 

of calculation applied to developable helicoids.  

A developable helicoid (figure 1) is a developable surface formed by tangents to the helical line of a 

constant step on a circular cylinder of radius a. The development of the developable helicoid on the 

plane is an annular region bounded by coaxial circles [10]. 

Therefore we can use the theory of thin elastic shells and calculate the ramp in the form of a long 

developable helicoid using the asymptotic method of a small parameter. This method is described in 

more details in the papers [11], [12]. The aim of this study is to show the analytical approach to the 

ramps in the form of developable helicoids calculation on a support draft. 

2. Asymptotic Method of Small Parameter for Developable Helicoid 

 
The most popular parametric equations for developable helicoids (figure 1) are the following [10]: 
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where 22 bam  , 

a is radius of the cylinder, tangents to which are the generators of a developable helicoids;                 

b is a hitch of a curve u = 0 (return edge);  

v is an angle deflected from axis Ox. 

 

 
Figure 1. Developable helicoid 

 

We determine the equations of developable helicoids as follows 
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    sin, ussuzz  ,                                                           (2) 

Here u, s are non-orthogonal conjugate coordinate lines (the coordinate lines u coincide with the 

rectilinear generatrixes of the torso-helicoid, and the lines s are equidistant helical lines of the surface); 

cos0am  ; 

2
0 cosaa  ; 

 cossin0ab  ;  

а0  is  a radius of a helical evolvent; 

φ – is inclination angle between the generatrix and the plane;  

abtg / ; 

mvs  ; 

 s is an arc of a helical cuspidal edge. 

The asymptotic method of small parameter in application to developable helicoids was introduced by 

Krivoshapko in [11] and developed by Rynkovskaya in [12], [13]. 

We can use here the system of three ordinary differential equations in dimensionless displacements U, 

V, W obtained by Krivoshapko [11] for calculation of thin elastic shells in the form of long torso-

helicoids subject to the dead load: 

X Y Z( )

u=const 

 

v=const 



3

1234567890‘’“”

ICBMC IOP Publishing

IOP Conf. Series: Materials Science and Engineering 371 (2018) 012041 doi:10.1088/1757-899X/371/1/012041

 

 

 

 

 

 

  ,1
2

4
02

22

4
03 EX

CB

a

d

dW
v

B
WX

CB

aU

d

d

d

d











































 
  ,

1

2
22 1

0
24

 


 AdXBY
Cv

a
WU

d

dUB

d

dVB



 

  .0
2

11 02
4























































Z

B

Y
X

C

a
WUv

d

dU

d

dV
B

d

dUv

d

dW

d

dB

d

dt

d

d












  (3)

 

U, V, W are dimensionless parameters of displacements;  

X, Y, Z are components of surface distributed load (analogue to dead load); 
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where zsu UUU ,,  are vector components of elastic displacement of the shell middle surface (with the 

width h). 

Dimensionless parameters of displacements U, V, W may be expressed from Eq. 3 as follows: 
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Since we use here the method of small parameter, the inclination angle between the generatrix and the 

plane must be φ < 45
0
 (µ = tgφ < 1), and solutions U, V, W are found in the form of series in powers of 

the small parameter µ: 
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where kkk WVU ,,  are vector coefficients to be found. 
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The small parameter method is used to solve mechanical and physical problems with differential 

equations containing certain parameters in cases when it is possible to find a particular solution of the 

differential equation for certain fixed values of these parameters that satisfy the initial conditions [14]. 

Substituting expressions (Eq. 6) into equations (Eq. 5), and equating consecutively free members and 

coefficients for powers  , we obtain a system of ( k33 ) equations for computing kkk WVU ,, . For 

example, to determine the vector coefficients 000 ,, WVU , it is necessary to take in equations (Eq.5) that

0 . As a result, we find solutions of the generating equations: 
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3. Application for calculation of a support draft  
We consider a long shallow developable helicoid with the following geometric characteristics (in the form of 

parametric equations Eq.1): 3a m; 2,0b m; 41 u m; 62 u m; h=0,01 m. 

If we use the parametric equations Eq.2, these characteristics correspond to the slope angle of the rectilinear 

generatrix 081418,306657,0  rad ; the inner radius 993,41R m, the external radius 696,62 R m, the 

radius of the a radius of a helical evolvent of the torso-helicoid return to the plane 0133.30 a  m. 

Let us determine modulus of elasticity 8102 E kPa and Poisson’s ration 3,0 . 

 

We will assume that the surface load is 0 zyx PPP , therefore, 0 ZYX ; and determine that the 

curvilinear edges 1  and 2   are rigidly clamped.  

Let us calculate the stress-strain state of the developable helicoid when the internal curvilinear contour 1  is 

displaced along the fixed z-axis by  

a
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222 
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We will assume 005.0)( 1  zu m. 

For a developable helicoid determined by parametric equations Eq.1, when the return-edge equations of the 

developable helicoid are written in the form 

vax cos , 

vay sin , 

bvz  ,                                                                        (9) 

angles between the fixed axis z and the directions of displacements uu , vu , zu  are 
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where 22 baF  . 

The angle between the tangent to the coordinate line v and the fixed axis z is found from the vector expression 
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where )(v  is a current radius vector of a return edge:  
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However, for the shape of the developable helicoid in the parametric form (Eq. 2), when the length of the arc s of 

the return edge is taken as the parameter v, the formulas for the angles between the fixed z axis and the 

displacement directions uu , su , zu  (Eq. 10) can be written in the following form: 
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The angle between the tangent to the arc length of the return edge s and the fixed axis z is found from the vector 

expression 
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The boundary conditions for this task will be written as: 
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where B is determined in Eq. 13. 

Equations (14) show that the curvilinear outer edge const 2 of the developable helicoid is fixed and 

rigidly clamped. Equations (15) allow the rigidly constrained curvilinear contour const 1
 
 move along 

the fixed z axis by a value δ. 

To solve the task, we can apply the method of a small parameter, for instance with the first terms of the series 

0UU  , 0VV  , 0WW  . 

Dimensionless parameters of the first terms of the series 000 ,, WVU  are obtained from Eq. 7 as follows:  
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To calculate the constants 40302010 ,,, CCCC , we apply the boundary conditions Eq. 14, 15 as follows:  
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To calculate the constants 40302010 ,,, AAAA , we use the following conditions  
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Finally, for the first term in the series, the expressions for the bending moments in this method will be written in 

the following form: 
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4. Test numerical experiments and discussion  
It is necessary to point out that this task is solved in the “pseudo-moments” Mu* (the asterisk ... * in Eq. 17 is not 

shown conditionally), because the equilibrium equations suggested by Goldenveiser A.G. [15] are used. There is 

an interrelation between “pseudo-moments” and traditional engineering moments, and it can be converted into 

traditional internal moments Mu, using the formula:  
cos** usuu MMM  ,                                                    (18) 

where 
21

11
cos







BAB

F
, and χ is an angle between coordinate lines u and v. 

As it is shown in Fig. 2, the normal displacements are distributed in accordance with engineering practice, and 

the boundary conditions are satisfied. 

 

 

 
Figure 2. Diagram of normal displacements uz at the draft of the curvilinear support 

 

Bending moments are shown in Fig. 3. 

The results shown in Fig. 2, 3 correlate to results obtained by Krivoshapko S.N. [11] for the developable helicoid 

in the form of Eq.1. 
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Figure 3. Diagram of bending moments Mu  at the draft of the curvilinear support 

 

 

5. Conclusion 

There is the investigation on the analytical approach to calculation of a developable helicoid 

curvilinear support draft which is based on the three ordinary differential equations in dimensionless 

displacements U, V, W solved by asymptotic method of small parameter for the developable helicoid 

determined through the axes u and s, and a radius of a helical evolvent a0 (Eq. 2).  

Numerical experiments are conducted. The results for normal displacements and bending moments 

obtained by this method are shown and they correlate to the engineering practice and numerical results 

obtained by similar analytical method applied to the developable helicoid determined through the axes 

u and v, and a radius of the cylinder a (Eq. 1).    

Despite the fact that the task is solved in “pseudo-moments”, they can be easily transverse into 

traditional engineering bending moments by the compact formula.  

It is shown that the analytical methods can also be successfully used for calculation of the complex 

form surfaces. As a future research, it would be interesting to solve the task using more members of 

series, as well as the task for developable helicoid with other boundary conditions.  
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