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Abstract. Compared with conventional concrete products, pervious concrete usually features 

with high water permeability rate and low compressive strength due to the lack of fine 

aggregates. Thus the determination of optimal mix design of ingredients has been recognized 

as an effective mechanism to achieve the trade-off between compressive strength and 

permeability rate. In this paper, we proposed a Markov Chain Monte Carlo based approach to 

approximate the optimal mix design of pervious concrete to achieve a relatively high 

compressive strength while maintaining desired permeability rate. It is proved that the 

proposed approach effectively converges to the optimal solutions and the convergence rate and 

accuracy rely on a control parameter used in the proposed algorithm. A number of simulations 

are carried out and the results show that the proposed system converges to the optimal 

solutions quickly and the derived optimal mix design. 

1. Introduction 

Pervious concrete is formed by mixing cement, water and coarse aggregates [1]. Due to the excellent 

permeability of pervious concrete, it has been widely used in urban construction and pavement. The component 

of cement paste usually forms a thick layer of coating around the coarse aggregate, the small particles of coarse 

aggregate are strongly combined with the cement paste to enhance stability and provide the desired mechanical 

properties [1,2]. Due to the absence of fine aggregates, a large amount of vacancies between coarse aggregates 

can be observed inFigure 1. These vacancies result ina much higher permeability rate of pervious concrete 

compared with the conventional counterparts that is shown inFigure 2. Contrarily, the lack of fine aggregate 

weakens the pervious concrete on compressive strength. Therefore, an effective and efficient pervious concrete 

mix design optimization that achieves the maximum compressive strength while maintaining a suitable 

permeability rate to meet the construction requirement is desirable [1]. 

In this paper, a design of pervious concrete as a Markov Chain Monte Carlo (MCMC) process is modeled 

[2,3,4,5,6,7] and an optimization approach to approximate the optimal mix design based on Gibbs Sampling is 

proposed [2]. In order to achieve the aim of maximize the compressive strength while maintaining a relatively 

high permeability rate, the key problem of this paper is to find out an optimal mix design to obtain those features 

(i.e., optimal relative proportions of ingredients). As a result, a global optimal solution that effectively and 

efficiently converged by the proposed algorithm is discussed. The rate and accuracy of convergence is 

dominated by a control parameter employed in the approach. In addition, a number of simulations are carried out 

to implement the Makov Chain Monte Carlo based approach. From the simulation results, we could see that the 
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system converges to the optimal mix design globally effectively and efficiently by using the Makov Chain Mnte 

Carlo based approach. Also the convergence of iteration is accurate and fast when the optimal system 

coefficients are used. 

 

 
Figure 1.Material structure of pervious concrete. 

 
Figure 2.Material structure of conventional concrete. 

The rest of this paper is organized as follows. In Section 2, the markov chain monte carlo technique and the 

Gibbs Sampling method are briefly reviewed. Section 3 describes a MCMC based pervious concrete model and a 

Gibbs Sampling method based optimization approach. The convergence analysis of the proposed algorithm is 

also depicted in Section 3. In Section 4, a number of simulations are carried out to show the effectiveness and 

efficiency of the proposed approach. Section 5 concludes this paper. 

2. Methodology 

The Markov Chain Monte Carlo (MCMC) technique is a general computing technique that has been widely used 

in physics and computer science, which include a family of algorithms for sampling from probability 

distributions based on constructing a Markov chain whose stationary distribution is the desired distribution. 

MCMC solve the complicated or high dimension problems by constructing a Markov chain having ( )   as its 

stationary distribution, and carry on the Monte Carlo method to the samples collected according to the ( )  . 

Initially, the prior distribution may be arbitrary, the system transits its states randomly with small steps to 

generate and filter samples. Once the qualified samples are generated for the Markov chain, this chain will be 

executed for a relatively long time to reach its stable state, which is referred as burn-in process.  Then, the stable 

samples will be used in the Monte Carlo integration to approximate the expectation of function. 

The Gibbs Sampling method is one of the well-known MCMC sampling methods which carry out the Monte 

Carlo method to the samples collected from a stationary distribution  . In a given system, system variable 

vector  x   is a N-dimension row vector with element 
nx , 1, ,n N L  and the distribution of interest  ( )F x  is a 

function of vector  x  and can be of any form. The key idea of the Gibbs Sampling method is that the value of 

each random variable in the vector x is updated iteratively and asynchronously according to a probability 

distribution.  

 

In each iteration, a sample is drawn from the conditional distribution ( | , ( ))
n n

P x x F x


where

1 1 1( , , , , , )n n n Nx x x x x   L L  , [1, ]n N . It can be seen that the Gibbs Sampling method defines a Markov 

Chain on variable x . Assuming  
1 2

( , , , )
N

    L is the feasible real domain corresponding to random 

variable vector x , the detailed Gibbs Sampling method is given in Algorithm shown below. 
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Algorithm 1: Gibbs Sampling Algorithm 

 Initialization: Randomly select an initial point 

x  ; 

 while n N do 

 the element 
nx is updated by a sample from the 

probability distribution 

( ) ( ( | ), )
n n n n n n n

P x P x x x 
 

    with 

'

exp( )
( , )

( | )

exp( )
( ', )

n n

n n

n n n

x n n

b

F x x
P x x

b

F x x





 








         (1) 

where b  is a positive constant.  

 increment n by one; 

 if n N , then 1n   ; 

 

According to (2), 
nx which produces a higher value of objective function deserves a higher probability to be 

selected. In light of the Gibbs Sampling method, it becomes possible to estimate highly complicated models. 

The weighted product method (WPM) is employed in our system to generate a utility function. WPM is one of 

the widely used multi-criteria decision making (MCDM) methods which allow one to carry out comprehensive 

analysis by taking account of multiple aspects of systems[1,2]. In a WPM system consisting of k  system 

variables (e.g.
1 2
, , ,

k
n n nL ) and l  system measures (e.g.

1 2
, , ,

l
m m mL ), a weighting coefficient

i , [1, ]i l  is 

assigned to each of system performance measures. Given a variable vector a , the weighted product P is 

calculated as follows 

       1 2

1 2

1

( ) ( ) ( ) ( ) ( )
jl

l

l j

j

P a m r m r m r m r
  



 L          (2) 

For any two variable vectors 
1a and 

2a , if 
1 2

( ) ( )P a P a  can be obtained, it can be concluded that 
1 2a a  i.e. 

the variable vector 
1a  is better than 

2a . 

3. Pervious Concrete 

3.1. System descriptions 
A mix design of concrete is usually given as the relative ratios of the weights of all ingredients, i.e. 

1 2

1: : : : :
n

wc a c a c a c
w r r r r L  where 

wcr  is water-to-cement ratio and 
ia cr , ( [1, ]i n ), is the weight ratio between 

the i -th aggregate and cement. The ratio 
1 2

1: : : : :
n

wc a c a c a c
r r r rL implies one part (by weight) of cement, to 

wcr  

parts of water, to 
1a cr   parts of aggregate 

1a ,until
na cr  parts of aggregate 

na . For simplicity, in the proposed 

porous concrete system, the mix design w is expressed as a ratio vector 
0 1 2

( , , , , )
n

r r r r r L  where 
0 wcr r and 

i
i a c

r r . Note that, because the ratio of cement to itself is constantly one, its value is not included in the ratio 

vector r . Then the ratio vector r  is used as the system variable vector and the system utility function is denoted 

by ( )U r [3,4]. 

Now the problem seeking the optimal mix design 
*w  has been converted into the problem finding the optimal 

ratio vector 
*

r  which maximizes the overall system utility,
*

( )U r  . Moreover, it is assumed that each ratio 
ir , 

( [0, ]i n ), can only take finite discrete values within the given space 
i

R , i.e., 
i i

r R  where 
1 2

( , , )
i i i ik

R r r r L , 

min max

1 2
, , [ , ]

i i ik i i
r r r r rL  and 

min

i
r and

max

i
r   are the minimum and maximum boundaries of space

i
R . Thus the 
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space of ratio vectors is 
1 2 n

R R R R   L . Once the optimal ratio vector 
*

r  is determined, the optimal value 

of utility function is derived and the weights of cement and other components can be easily derived. 

3.2. Implementation of the Gibbs sampling method 

Let {1, 2, }T  L  denote the index of a sequence of iterations. At the first step 1t  , an arbitrary ratio vector 

denoted by ( )r t , ( ( )r t R ), is select. When the iteration moves from t to 1t  , ( t T , 1t T  ), the ratio 

vector is updated from ( )r t  to ( )1r t  , i.e., the system state transits from  ( )r t  to ( )1r t  . In this process, there 

is one and only one element 
i

r in ( )r t , is updated according to the probability distribution ( ( ))
i i

r t


  as given 

below. 

'

exp( )
( , ( ))

( ( )) ( | ( )) ,

exp( )
( ', ( ))

i i

i i

i i i i i i i

r R
i i

b

U r r t
r t r r t r R

b

U r r t



 






    





         (3) 

where   is a positive constant and 

0

1

( ) if 1,
( )

( ) if 0.
i

r t i
r t

r t i











         (4) 

according to the observation of ( )ir t
. After updating the ratio from ( )ir t to ( 1)ir t  , the value of utility 

function ( )1( ) U r t   is evaluated for the new generated ratio vector ( 1)r t  . From (4), the value of 
ir  inducing 

a high ( , ( ))
i i

U r r t


deserves a high probability to be employed. Then the process moves forward to next iteration. 

Please note that, at any step t  of the iteration process, system keeps tracking the average value of utility function 

( )U t  and compare it with ( ( ))U r t . If the difference between these values is equal or smaller than a pre-defined 

value   and remains stable, the system converges. The average value of utility function ( )U t is calculated as 

follows. 

' 1

1
( ) ( ( ))'

t

t

U U
t

r tt


           (5) 

In the design of utility function ( )U r  of pervious concrete, the pervious concrete system can be treated as a 

multi-criteria decision making (MCDM) problem which consists of l  system performance measures. These l  

desired performance measures must be taken into account so that the system can reach the tradeoff among them. 

As mentioned in previous sections, the porosity in pervious concrete is produced by the reduction or the 

elimination of fine aggregate from the mix design of general concrete. As a result, the pervious concrete is 

featured with a high permeability rate. On the other hand, a high compressive strength is one desirable property 

of pervious concrete. Therefore, by using the weighted product model (WPM), the utility function U  of the 

proposed system is defined as a function of compressive strength ( ( )
c

f r  in MPa ) and permeability rate ( ( )K r  

in / secmm ), i.e., 

     1 2

( ), ( ) ( ) ( )
c c

U f r K r f r K r
 

          (6) 

where
1

(0,1)   and  
2 1

1   . 

3.3. Convergence Analysis of the proposed system  
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The proposed mix design optimization approach of pervious concrete can be modelled as a Markov chain. Given 

R  as the space of the ratio vectors of the system and let 
initr  and 

endr denote the initial and the end ratio vectors, 

respectively,  the transition matrix is  
1

n

i

i

P P


 where ( , )
i i init end

P p r r  , ,init endr r R  , with 

, , , ,
( | ) if ,

( , )
0 .

i end i init i init i end i

i init end

r r r r
p r r

otherwise

  
 






         (7) 

where
, ,1 , 1 , 1 ,

( , , , , , )
init i init init i init i init n

r r r r r
  
 L L is defined as the same manner. In (8), ( , )i init endp r r  indicates the 

transition probability between 
initr  and 

endr  of an iteration step with respect to the i-th element in the ratio vector. 

Based on this definition, it could be induced that there must exist such an integer k , 0k  , that, after k  

iterations, all ingredients (i.e. all elements in the ratio vector) have updated their ratios at least once. In other 

words, all the entries in 
'k

P , 'k k , are strictly positive, which corresponds to a regular Markov chain. Because 

a regular Markov chain is actually also an ergodic Markov chain, the Markov chain of the proposed system is an 

irreducible, aperiodic and positive recurrent Markov chain and has the convergence properties of an ergodic 

Markov chain. Moreover, the Markov chain of the proposed system must converge to the unique stationary 

distribution 
1 2 | |

( , , , )
R

    L  in which | |R  is the cardinality of R and 
r , 

r   is defined as follows. 

 

'

exp( )
( )

exp( )
( ')

r

r R

b

U r

b

U r












 (8) 

Let 
*

r  denote optimal ratio vector maximizing the utility function U . For simplicity of notation, we denote 
*

( )U r  by 
*

U  which indicates the value of the utility function when the variable is the optimal ratio vector 
*r .  

Note that, because 
*r  is the optimal ratio vector, the corresponding 

*
U is the maximum value compared with the 

values of ( )U r when 
*r r . Moreover, if there are more than one optimal ratio vector, we define 

*
R  as the set 

of all optimal ratio vectors, i.e. 
* *

i
r R , 

*

[1, | |]i R .As a result, 
* * *

1 2
( , , )U U U L  is the collection of maximum 

values of utility function corresponding to
* *

1 2
, ,r r L , (

* * *

1 2
, ,r r RL ). 

Dividing the numerator and the denominator of (9) by 
*

exp( )
( )

b

U r


 gives 

1 2

exp[ ( )]

exp[ ( )] exp[ ( )] exp[ ( )]
r

M

b r

b r b r b r




  




     L
 (9) 

where 
*

1 1
( ) ( )

( )
r

U r U
   .  

Note that, when 
*

r r , we could induce that
*

* * * *

1 1 1 1
( ) ( ) ( ) 0

( )

r

U r U U U

      . As a result,

*
exp[ ( )] exp(0) 1b r   . Thus, 
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*

*

*

' , '

*

' , '

exp[ ( )]
if  is unique,

1 [ ( ')]

exp[ ( )]
otherwise.

| | exp[ ( ')]

r R r R

r

r R r R

b r
r

r

b r

R b r










 

 



 




 













(10) 

where | |  indicates the cardinality of ( ) . In (11), it can be observed that the value of b  has great impact on the 

stationary distribution. Considering the general cases where
*

| | 1R  , we have 

*

*

' , '

exp[ ( )]
lim ( ) lim

| | exp[ ( ')]b b

r R r R

b r
r

R b r




 

 




 
         (11) 

Note that lim exp[ ( ')] 0b r





  , 'r R  and 
*

'r R .  If
*

'r R , then ( ) 0r  , and 

*

* *

' , '

exp[0] 1
lim ( ) lim

| | exp[ ( ')] | |b b

r R r R

r
R b r R


 

 

 
 

         (12) 

otherwise, 

*

*

' , '

0
lim ( ) lim 0

| | exp[ ( ')]b b

r R r R

r
R b r


 

 

 
 

         (13) 

From (13) and (14), it can be found that the value of each element in the stationary distribution is primarily 

dominated by the coefficient b . It can be observed that the Markov chain of the proposed system must converge 

to a stationary distribution when the coefficient b  approach infinite, as shown in (13) and (14). 

4. Simulation Configurations and Results 

4.1. Configurations 

As a primary interest of pervious concrete research, the permeability is measured as the water penetrating 

through pervious concrete samples which is expressed in millimeters per second ( / secmm ). In our proposed 

system, we will use the experimental data provided in [] to build up the MCMC system model. According to the 

experimental data, the maximum compressive strength and the maximum permeability rate are 

,max
19.8573

c
f MPa  and

max
26.6630 / secK mm , respectively. In all simulations, it is assumed that, except cement, 

only water and one type of coarse aggregate sizes between 4.75mm  and 9.5mm are used to make the pervious 

concrete samples. The water to cement ratio and the aggregate to cement ratio are denoted as  
0r and  

1r , 

respectively. More specifically, the minimum and maximum values of these parameters are summarized in Table 

1. Please refer to [3] for the detailed experimental data and more information on the configurations and 

preparations of the specimen. 

By following (7), the maximum value of utility function can be obtained as follows 

1 2

max max
( ( ), ( )) max{[ ( )] [ ( )] }

c c
r R

U U f r K r f r K r
 



           (14) 

Based on the configurations given above, a number of simulations are carried out to verify the effectiveness and 

efficiency of the proposed Gibbs Sampling approach. 
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Table 1Initial relative ratios of components 

Component

s 

Ratio Min value Max value Steps 

Cement 1 NA NA NA 

Water 
0

r  
min

0
0.3r   

max

0
0.4r   1000 

Aggregate 
1
r  

min

1
3.1r   

max

1
5.7r   1000 

4.2. Simulation results 
We first observe the effect of the controlling parameter b  on the performance of the Gibbs Sampling method. 

Figure 3compares the compressive strength of the Markov Chain Monte Carlo based approach with the other two 

approaches, each of which focuses on maximizing either compressive strength or permeability rate only. It is 

shown that the Gibbs Sampling optimal mix design achieves the trade-off between a high compressive strength 

while maintaining a desired permeability rate. The figure suggests that a large value of b  is preferable when it 

comes to the optimality of the solution. 

Next, we evaluate the effect of the weighting coefficient 
1

  on the performance of the system. The value of 
1

  

varies from 0 to 1 with 0.1 increment. Figure 4 shows the comparison of the compressive strength at different 

values of  
1

 . It can be observed that, when  
1

[0, 0.45]  , the compressive strength remains stable regardless 

the value of b . Thereafter, the value of compressive strength dramatically and almost linearly increases with the 

increase of  
1

 .  Figure 5 shows that the permeability rate remains stable when  
1

0.45  .  When 
1

0.45  , 

the permeability rate significantly decreases with the increase of  
1

 . 

5. Conclusions 

This paper proposed a Markov Chain Monte Carlo algorithm-based optimization algorithm to approximate the 

optimal mix design of pervious concrete. The derived optimal mix design achieves the trade-off between the 

maximum compressive strength and the desirable permeability rate of pervious concrete. We also proved that the 

proposed method effectively and efficiently converges to the optimal solutions. A control parameter b  employed 

in the proposed algorithm dominates the speed and accuracy of convergence, specifically, a large value of  b
leads to a fast convergence speed and a high convergence accuracy. Simulations show the consistent results. 

 

 
Figure 3. Compressive strength for different 𝒃. 



8

1234567890‘’“”

ICBMC IOP Publishing

IOP Conf. Series: Materials Science and Engineering 371 (2018) 012020 doi:10.1088/1757-899X/371/1/012020

 

 

 

 

 

 

 
Figure 4.Compressive Strength for different 𝜶𝟏. 

 
Figure 5. Permeability for different 𝜶𝟏. 
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