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Abstract. This paper presents an approach that combines the finite element (FE) modeling and 

genetic programming (GP) to provide accurate empirical stress intensity factor (SIF) equations 

for center-cracked steel plates repaired with adhesive-bonded double-sided fiber-reinforced 

polymer (FRP) patches. Several past studies in recent years independently showed that the 

reduction on the SIF of cracked structures after the patch repair is dependent on many factors 

such as bonding techniques, material parameters, geometric parameters, environmental factors. 

In this study, the SIF of the repaired cracked steel plate was considered to be a function of 

seven parameters including the crack length, elastic modulus of FRP material, shear modulus 

of adhesive material, dimensions (width, length, and thickness) of rectangular FRP patches, 

and thickness of adhesive layers. Empirical SIF equations were created by the data mining 

process of genetic programming analyses performed on a database created from the FE results. 

The SIF values obtained from these equations were also compared with an analytical equation 

to assess whether their ability to perform well on a certain design or not. It was found that the 

proposed SIF equations fitted well with the FE results as the squared Pearson correlation 

coefficients R
2
 are higher than 0.9. In addition, the correlations between proposed equations 

and the analytical equation are approximately 0.8.  

1. Introduction 

Fiber reinforced polymer (FRP) materials that consist of high strength fibers and tough resin matrix 

possess a lot of prominent and beneficial features such as high modulus and strength, low density, 

excellent fatigue resistance, great resistance to corrosion, and great flexibility [1]. In recent years, 

these features have become more attractive in structural engineering for strengthening structural 

members as well as for repairing cracked or defective ones. 

Numerous previous studies showed that bonding of carbon fiber reinforced polymer (CFRP) patches 

strongly influences flexural strength of steel beams [2, 3], slightly increases lateral-torsional buckling 

capacity of steel girders [4], successfully opposes local buckling in steel hollow section members [5], 

and enhances the strength and the ductility of concrete-filled steel tubes [6]. The FRP bonding also 

increases flexural stiffness of repaired members [7] and reduces stresses in these members as 

transferred stresses to external components through adhesive shear stress [8]. In addition, it has been 

demonstrated that the crack-bridging effect from the adhesively CFRP patching [9] and the 

redistribution of stresses in a repaired structure cause a significant reduction on both the crack opening 

displacement and effective stress range at the crack tip [10]. The crack repair technique also shows the 

beneficial effects of increasing the fatigue performance and reducing the mode I of stress intensity 

factor (SIF) of cracked structures. Previous investigations showed that the repair technique can 

significantly increase the fatigue life of cracked steel beams from 50% to 4 times [4] and more than 
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20% for cracked steel plates [11]. A significant reduction of the SIF due to the FRP patches was also 

reported for both cracked steel girders [12] and cracked steel plates [13]. 

The effectiveness of the repair design for a cracked structure is assessed based on the reduction of 

SIFs at the crack tip while adhesive shear stress and stresses in the FRP patch are within acceptable 

limits [10]. To facilitate the repair design, the closed-form SIF equation should be developed. 

However, the development of an accurate empirical closed-form SIF equation that incorporates the 

combined effects of several design parameters simultaneously is still a challenging work. 

This paper presents an approach that combines the FE modeling and genetic programming (GP) to 

provide accurate empirical equations of the SIF in terms of the crack length, and six design parameters 

for a center-cracked steel plate repaired with adhesive-bonded double-sided FRP patches. 

2. Rose’s approach for the SIF solution 

An important concept for a preliminary estimate of the SIF of a crack patching problem is the two-

stage process proposed by Rose [14], as depicted in Figure 1. In the first stage, the un-cracked steel 

plate is assumed. The normal stress in the un-cracked steel plate underneath the patch, σs, is 

determined based on one-dimensional linear-elastic technique [15] as specified in equation (1). In the 

second stage, the steel plate is cut along a line segment as the central crack of length 2a. The stress 

σ0=σs(y=0) is applied internally as the pressure to the crack faces. The SIF for the crack configuration 

in stage II is determined by the well-known formula in equation (2). 
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Es, Ep, and Ga are the modulus of steel, the longitudinal modulus of FRP, and the in-plane shear 

modulus of adhesive, respectively; ts, tp, and ta represent the thicknesses of the steel plate, FRP patch, 

and adhesive layer, respectively; σy is the uniform tensile stress at the steel plate ends; Lp is the length 

of the rectangular FRP patch. 

 

 

Figure 1. Two-stage analysis process for crack patching problem. 

 

3. Finite element analyses 

3.1. Geometric and material properties 
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To evaluate the average of the SIF value along the crack front of the repaired cracked steel plate, the 

three-dimensional FE analyses were performed using the general FE program ABAQUS/CAE. The 

subscript letters s, a, and p denote the steel plate, the adhesive layer and the FRP patch, respectively. 

A total 175 FE models were generated for the steel plate with the length, Ls=500 mm, the width, 

Ws=90 mm, and the thickness, ts=10 mm. As shown in Figure 2, the central crack of length, 2a, with a 

circular hole R = 5 mm was included. Different crack lengths of 20%, 30%, 40%, 50%, 60%, 70%, 

and 80% of the steel plate width were chosen. 

The steel plate was subjected to a uniform pressure of σy=150 MPa on two ends. Due to symmetry 

about the two axes (i.e. the x-axis and the y-axis), a quarter model with symmetric constraints applied 

on the boundaries was used, as shown in Figure 3. 

 

 

Figure 2. Geometry of cracked steel plate repaired with double-side FRP patches. 

 

 

Figure 3. Quarter finite element model in ABAQUS. 

 

The double-sided rectangular FRP patches and adhesive layers have the same dimensions: the length, 

Lp=La, and the width, Wp=Wa. The FE analyses were carried out for different geometrical 

configurations of Lp and Wp. The FRP patch width, Wp, was subdivided into five levels in the interval 

[2a, Ws] while five levels for the length of FRP patch, Lp, were 50, 100, 150, 200, 250 mm. For 

example, if the crack length was 2a=20%Ws=18 mm, the interval of Wp is [18, 90] and five levels for 

Wp were 18, 36, 54, 72, 90 mm. 

The thickness of FRP plate, tp, changed in the range from 1 to 1.8 mm with five levels, tp={1, 1.2, 1.4, 

1.6, 1.8}. The thickness of adhesive layers, ta, varied from 0.25 to 1.25 mm with five levels, ta={0.25, 

0.50, 0.75, 1.00, 1.25}. 

The material properties of the steel plate, five different FRP types and adhesive materials were adapted 

from a previous work [10], as given in Table 1. The mechanical behavior of all materials was linear 

elastic. Steel and adhesive were analyzed as linear isotropic elastic materials; the behavior of FRP 

material was orthotropic elastic in plane stress [16]. 
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Table 1. Material properties of cracked steel plate, patches, and adhesives [10]. 

 

 

Materials 

Material properties 

Longitudinal 

modulus  

E1 (GPa) 

Transverse in-plane 

modulus 

 E2 (GPa) 

In-plane shear 

modulus 

G12 (GPa) 

Major in-plane 

Poison’s ratio 

υ12 

Steel plate 200.00 n/a 76.92 0.30 

FRP composite         

Boron/Epoxy 5505  219.90 21.40 6.89 0.21 

Boron/Epoxy 5521 195.10 19.40 5.52 0.21 

AS4/3501-6 124.10 11.00 5.52 0.34 

IM6/SC1081 177.20 10.80 3.93 0.27 

T300/F934 148.10 9.70 4.55 0.30 

Adhesive         

FM-73 0.96 n/a 0.36 0.35 

FM-300 1.29 n/a 0.46 0.40 

FM-300K 1.37 n/a 0.52 0.32 

A-9321 1.50 n/a 0.55 0.36 

FM-36 1.81 n/a 0.67 0.35 

3.2. Finite element models 

A twenty-node quadratic brick element, C3D20, was used to represent steel and adhesive while a 

continuum shell element, SC8R, which allows for thick and thin shell applications, was used for FRP. 

To capture the singular stress and strain fields near the crack front, a collapsed three-dimensional 

element (collapsed C3D20) was assigned as steel elements near the crack front. All element types and 

their applications are clearly introduced in ABAQUS analysis user’s manual [16]. The global size of 

steel plate elements was approximately 1 mm; the element size of 0.75 mm was used for both FRP and 

adhesive elements. 

Furthermore, to construct an analysis matrix for performing FE analyses as well as to create a database 

for GP analyses, a total seven L-25 Taguchi arrays corresponding to 175 ABAQUS models were 

created. Each L-25 array with 25 observations was constructed based on the Taguchi methodology [17] 

for a particular crack length combined with the rest six design parameters; each parameter has five 

levels. 

4. Genetic programming methodology 

4.1. Genetic algorithm 

Genetic algorithms (GAs) are iterative numerical algorithms for solving optimization problems 

motivated by natural selection and natural genetics [18]. Each GA operates on a population of 

candidate solutions represented by binary strings in a computer program; an example of numeric 

numbers encoded by binary strings is shown in Figure 4a. 

 x1 x2

+

*

x3/

x2

Terminal nodes

Terminal nodes

Functional nodes

 

a) GA individuals b) A GP individual  1 2 2 3/x x x x    

Figure 4. Example of candidate solutions in GA and GP. 
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At the start of each GA, randomly numeric values of independent variables in the solution space are 

encoded to corresponding computer strings in the computer program with respect to the 1-to-1 

mapping property in which each binary string in coding space represents exactly one point in the 

numeric solution space and vice versa. GA then determines directly the fitness of each string, which is 

the value of a given objective function at each corresponding numeric point. After that, the algorithm 

scores all existing strings in the current computer program to determine which strings are good and 

which strings are weak. Based on this determination, good strings are combined randomly in pairs 

(crossover) while weak strings may change their own structure (mutation) to produce a better 

population of new strings for the next generation. This loop will be repeated until reaching stopping 

criterion as a given number of generations or iterations of the algorithm. 

4.2. Genetic programming 

Genetic programming (GP) is one important application of GA. The major difference between GP and 

GA is the representation of candidate solutions, which are binary strings in GA, as shown in Figure 4a 

and hierarchical computer programs (tree structures) in GP, as shown Figure 4b. 

In the present study, GP maximized the objective function as the squared Pearson correlation 

coefficient R
2
, which effectively measures the strength of a linear relationship between two sources 

obtained from FE models and obtained from GP models to provide the best fit models for the SIF. The 

main reason of this choice is that the SIF is affected by many factors; there is no evidence to decide 

what type of functional form to be defined first as the property of traditional regression techniques. In 

this case, GP property of simultaneously finding the model that most appropriately fits the data and 

corresponding numerical coefficients of the model, namely symbolic regression, is reasonably 

required. 

The process of performing the GP includes three steps. In the first step, the initial population of a 

certain number of the tree structures is created by using materials from members of function (F) and 

terminal (T) sets. The F set includes arithmetic operations, mathematical functions, Boolean 

operations, conditional operators, or any user-defined functions [19]. Within a tree structure, each 

member of the F can occupy nodes that have two arguments, namely functional nodes. Meanwhile, the 

T set contains independent variable atoms or constant atoms [19]. These atoms may locate at terminal 

nodes, which have no explicit argument. Examples of the functional nodes and terminal nodes are 

given in Figure 4b. In the second step, GP computes R
2
 values that represent the correlation between 

the FE results and those obtained from all tree structures in the current generation. Based on these R
2 

values, GP stores all strings in a column vector and arranges them in a descending order of fitness 

value. After the arrangement, GP performs three genetic operators in a sequence: elite transfer (Figure 

5a), crossover (Figure 5b), and mutation (Figure 5c). Finally, the last step defines the solution of the 

GP analysis that is the best-so-far tree structure. The GP’s solution merely depends on the stopping 

condition of the GP analysis where the algorithm states the current population of tree structures and 

reports the best tree structure stored in the computer cache at the same time.  

*

x1 x1

+

/

x2

*

x1 x1

+

/

x2

 

x1 x2

+
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x2 x3

*
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x2 x3

*
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+

*

x1/

x2

 

*
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/
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*

x1 x2

+
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a) GP elite transfer b) GP crossover c) GP mutation 

Figure 5. Example of three genetic operators of GP. 
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This study used HeuristicLab [20] as the GP tool for the SIF equations.  

5. Results and discussions 

5.1. GP Analyses 

A database of 175 samples taken from FE results was randomly shuffled into seven different groups 

with 25 samples for each group, i.e., group A, B, C, D, E, F, and G to avoid the bias of the GP analysis 

on a certain group of samples. Corresponding to these groups, seven different models, i.e., M1, M2, 

M3, M4, M5, M6, and M7, were assigned. For example, in model M1, as given in Table 2, data group 

A was used for testing, and the rest six groups (B, C, D, E, F, and G) were used for training. This is 

consistent with the principle of separating the dataset in data mining where most of the data are 

assigned as a training set and a smaller portion is assigned as a testing set. The use of both the training 

set to produce an initial fitting model and testing this model by making predictions oppose the testing 

set provides a considerable significance to avoid overfitting of regression solution. 

 

Table 2. Models used for GP analyses. 

Model 
Training set Testing set 

Data group Number of data Data group Number of data 

M1 B, C, D, E, F, G 150 A 25 

M2 A, C, D, E, F, G 150 B 25 

M3 A, B, D, E, F, G 150 C 25 

M4 A, B, C, E, F, G 150 D 25 

M5 A, B, C, D, F, G 150 E 25 

M6 A, B, C, D, E, G 150 F 25 

M7 A, B, C, D, E, F 150 G 25 

 

All empirical equations were also developed with the same GP input of both function set F= {+, -, *, 

square, power} and terminal set T= {x1, x2…, x7, [-5,5]}. Here, the constant atoms were in the interval 

[-5,5]. The stopping condition of each GP analysis was equal to the maximum number of generations 

of the algorithm loop, gen=500, 1000, 1500, and 2000. Additional control parameters defined at the 

beginning of each GP analysis are also provided in Table 3. 

 

Table 3. Control parameters used in GP analyses. 

Parameter Value 

Number of tree structures 10 000 

Probability of mutation 25% 

Elite count (reproduction option) 2 

Maximum number of tree depth 10 

Maximum number of tree length 50 

5.2. Empirical stress intensity factor equations 

The relationship between the SIF and seven parameters including the crack length, FRP modulus, FRP 

patch width, FRP patch length, FRP patch thickness, adhesive modulus, and adhesive layer thickness 

is characterized by the following mathematical model: 

    
1/2

1 2 3 4 5 6 7, , , , , , yK f x x x x x x x a   (4) 

where 

 
1 2 3 4 5 6 7

2
; ; ; ; ; ;

2 2

p p p p a a

s s s s s

E W L t G ta
x x x x x x x

W E a a t E t
        (5) 
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Let, the GP analyses produced acceptable closed-form equations for the f factor when the 

corresponding coefficient R
2
 is higher than 0.9.  

 

Table 4 shows the coefficients R
2
 of the three best models (M2, M3, and M7) obtained from a total of 

seven GP analyses for both training and testing sets. The scatter plots of Pearson correlation analyses 

of these models are also given in Figure 6a, b, and c. It can be clearly observed that after reaching the 

maximum number of generations as stopping criterion of the GP analyses, the R
2 

values for training 

data of models M2, M3, and M7 are 0.941, 0.925, and 0.935, respectively. In  

Table 5, the coefficients R
2
 of the rest four models (M1, M4, M5, and M6) at gen=2000 are also 

almost 0.92. These results indicate a significantly high correlation between all GP models and FE 

results. 

 

Table 4. Results of the best three GP analyses M2, M3, and M7 for f factor model. 

gen 

Model M2 Model M3 Model M7 

Training set 

R
2
 

Testing set  

R
2
 

Training set 

R
2
 

Testing set  

R
2
 

Training set 

R
2
 

Testing set  

R
2
 

500 0.870 0.847 0.868 0.878 0.908 0.903 

1000 0.890 0.900 0.904 0.940 0.928 0.892 

1500 0.917 0.928 0.914 0.889 0.931 0.908 

2000 0.941 0.901 0.925 0.947 0.935 0.900 

 

Table 5. Comparison of seven f factor equation models. 

Model Gen Training set, R
2
 Testing set, R

2
 

M1 2000 0.921 0.857 

M2 2000 0.941 0.901 

M3 2000 0.925 0.947 

M4 2000 0.916 0.907 

M5 2000 0.916 0.934 

M6 2000 0.916 0.912 

M7 2000 0.935 0.900 

 

In Figure 6d, the predicted f factor values of all seven proposed models are compared with the f factor 

values evaluated from FE results for the training samples and testing samples. It is recognized that 

proposed models are very similar even though they were built based on different data groups. Hence, it 

can be concluded that these models can have the same ability to provide a powerful tool for the 

prediction of the SIF for a cracked steel plate repaired by bonded double-sided FRP patches. 

The closed-form SIF equation of model M2 with the highest coefficient R
2 

for the training data 

(R
2
=0.941) is expressed by: 

    
1/2

1 2 3 0.9598 yK f f f a        (6) 

where 

    
1 2

1 0 5 1 7 2 3 3 4 4 5 1 6 1 1.2218f c x c x c c x c x c x c x
       

 
 (7) 

         1 5 2 2

2 7 8 3 9 7 10 1 11 4 12 1 13 7f c c x c x c x c x c x c x
      

 
 (8) 

 
3 14 1 15 2 16 3 17f c x c x c x c  (9) 

where c0, c1,…,c17 are constants, as given in Table 6. 
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Table 6. Coefficient values for SIF empirical equation provided by the GP model M2. 

c0 c1 c2 c3 c4 c5 c6 c7 c8 

3.7443 2.4381 4.7712 1.3121 -0.5499 1.2800 1.7375 5.8520 1.2888 

c9 c10 c11 c12 c13 c14 c15 c16 c17 

2.4381 1.7375 -0.5374 0.6311 1.1647 1.3527 0.3121 0.3193 -87.0620 

 
 

a) model M2 b) model M3 

  
c) model M7 d) all seven models 

Figure 6. Association for f factor from FE results and predicted values from a) model M2; b) model 

M3; c) model M7; d) all seven proposed models. 

5.3. Comparison of the SIFs obtained from Empirical Equations and Rose’s Approach 

Recently, based largely on analyses derived from Rose’s approach, some software programs were 

developed for the crack repair in the field of aerospace engineering [10]. This fact promotes the need 

for an evaluation of how well the analytical equation is represented by the proposed empirical 

equations. A comparison of the SIFs obtained from proposed equations and those obtained from 

Rose’s approach in section 2 was made. It could be a good choice for checking the rationality of 

proposed models since so far, there have not been any equations that fully express the relation between 

the SIF and the stated seven design parameters. As the result, the SIFs obtained from proposed 

empirical equations are relatively smaller than the ones obtained from the analytical equation. 

Furthermore, the correlation analyses used to assess the strength of the relationship between proposed 

equations and the analytical one were also performed. It was found that the correlations between the 

three best-proposed equations corresponding to the GP models M2, M3, and M7 and the analytical 

equation are 0.766, 0.761, and 0.770, respectively.  
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6. Conclusions 

This paper is aimed at indicating the possibility of adapting the FE method combined with genetic 

programming to provide accurate empirical SIF equations for a cracked steel plate repaired with 

adhesive-bonded double-sided FRP patches. The results obtained from the numerical work led to the 

following conclusions: 

 The SIF empirical equations obtained from GP analyses remarkable correlate with the FE 

models. The empirical equation that has the best correlation with FE results was also given.  

 The SIFs predicted by the empirical equations are relatively smaller than those derived from 

Rose’s approach. In other words, from a structural designer standpoint, each proposed 

equation is more economical than the analytical one. 

 Relatively strong associations between proposed equations and the analytical equation are 

drawn as the correlations between them approach 0.8. 
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