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Abstract. In order to investigate the seismic behaviour of the high strength concrete squat wall 

with distributed steel tubes, Three squat walls with steel tubes and one RC squat wall were 

tested. The strength, shear deformation, and energy dissipation capacity of these specimens 

were analyzed. The test results showed that the load-carrying capacity of the high strength 

concrete squat wall can be decreased after inserting steel tubes. However, the deformation 

capacity and the energy dissipation capacity of the squat wall can be improved dramatically 

when steel tubes are inserted into the section of the wall, especially the squat wall with steel 

tubes evenly distributed in the section, and as a result, it can be concluded that they are very 

suitable for application in the conversion layer to improve the collapse resistant capability of 

structures. 

1. Introduction 

Squat shear wall refers to the wall which the aspect ratio is less than 1.5. This type of wall is 

considered to exhibit poor ductile behavior due to the premature shear failure. Squat walls have been 

widely used in practical engineering, especially in walls that directly connected with foundation, that 

located on the upper part of the conversion layer, and that used in the nuclear engineering buildings [1, 

2]. Because of the requirement for practical applications, many research works were carried out on the 

following related squat walls. Su et al. [3, 4] summarized and discussed the experimental data of four 

shaking table tests and numerical findings, and found that the phenomenon of shear concentration 

appeared at exterior walls above the transfer floor due to the local flexural deformation of transfer 

structures. The effect of shear concentration made the squat shear walls more prone to the occurrence 

of brittle failures, leading to the interrupt of the vertical load path and then the local collapse. 

Based on the investigation of earthquake disaster and related researches [5-7], a new type squat shear 

wall with steel tubes distributed in the section was proposed in this study. This type of squat wall is 

supposed to enhance the deformation capacity and collapse resistant capability of structures making 

use of the advantages of concrete-filled steel tubes (CFSTs). In this paper, four high strength concrete 

squat shear walls with distributed steel tubes are designed and tested to investigate the seismic 

performance of this type wall. The shaped steel ratio and the arrangement of steel tubes are taken as 

major parameters. Based on the test data, an analysis of the failure modes, strength, stiffness 

degradation, ductility, and energy dissipation capacity of those specimens was conducted. The work in 
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this paper also provides a foundation for further development of a theoretical analysis, which will be 

discussed in another paper. 

2. Experimental program 

2.1. Test specimens 

Four squat walls (SW1-SW4) with the same dimension were tested under cyclic loading. All the 

specimens had a height of 1080mm and a thickness of 160mm. The aspect ratio of the specimens was 

0.95. The overall geometries of the squat walls are shown in Figure 1. The axial compression ratio of 

the specimens was the same, which was 0.35. Figure 2 shows the detailed sectional configurations of 

the specimens. SW1 was a RC squat wall taken as a comparative specimen. SW2 and SW3 were the 

squat walls with steel tubes arranged at both sides and the middle section of walls, respectively. SW4 

was a squat wall with steel tubes evenly distributed in the cross-section of the specimen. 

The outer diameter of the steel tube was 89mm, which was selected to match the size of specimens. 

The thickness of steel tubes was 4mm to ensure that the steel tube had sufficient constraint on the 

concrete filled in it. The diameter-to-thickness ratio of the steel tubes was 22.3. Steel tubes and 

vertical rebars were inserted into the foundation beam and top beam to ensure sufficient anchorage. 

The anchoring lengths of the vertical rebars and steel tubes were 650mm and 480mm, respectively. 

Four annular bars were welded at the bottom of each steel tube to anchor the steel tube into the 

foundation for the purpose of transferring the loads, as shown in Figure 1. 

 

 

Figure 1. General layout dimensions and reinforcement arrangement of the specimens (Unit: mm). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Sectional dimensions and reinforcement details of specimens (Unit: mm): (a) SW1; 

(b)SW2/SW3; (c) SW4/SW5; (d) SW6. 
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2.2. Material properties 

The measured yield and ultimate strengths of steel rebars are summarized in Table 1. The steel tubes 

were made up of Grade Q345 steel. The material properties of steel tubes, used in the tests, are also 

reported in Table 1. The concrete that filled in the steel tube had the same strength grade with that 

outside the tube. The average cube strength (fcu) at the time of tests is 66.7 MPa. 

 

Table 1. Material properties for steel. (Unit: MPa). 

 Rebar D8 Rebar D12 Rebar D20 Steel tube 

Yield strength fy 410 483 443 348 

Ultimate strength fu 587 659 600 416 

3. Experimental observations and test results 

3.1. Damage and failure mode 

Figure 3 shows eventual failure of the four specimens. According to the test of four specimens, the 

failure model of the high strength concrete squat shear walls with distributed steel tubes was analysed. 

SW1 was a RC shear wall. The first crack occurred at the upper left corner of the specimen during the 

controlled rotation 1/1000, and then extended to the lower right corner. When reaching the peak load 

(the controlled rotation was 1/100), SW1 failed with the main diagonal crack coalesced which inclined 

at an angle around 45° to the horizontal direction. Simultaneously, the horizontal reinforcement in the 

central of the wall fractured, and the longitudinal reinforcement at the lower right corner buckling. The 

concrete around the main diagonal crack spalling severely and the concrete at the lower right corner 

crushed. The eventual failure was the brittle shear failure mode along the main diagonal crack, as 

shown in Figure 3(a). 

SW2 was the squat wall with steel tubes arranged at both sides. The first crack occurred at the upper 

right corner of the specimen during the controlled rotation 1/2000. When the controlled rotation was 

1/250, large numbers of 45° skew cracks occurred at the middle of the web of the wall, some of which 

developed as the main diagonal cracks at further stage. When the controlled rotation was 1/100, two 

main diagonal cracks appeared apparently with the concrete at the intersection crushed severely. When 

the controlled rotation was 1/75, the concrete at the intersection of two main diagonal cracks was 

almost completely peeled off, and the vertical web reinforcement buckling, as shown in Figure 3(b). 

Compared with SW1, the damage of SW2 was more homogeneous before the peak load of SW1, and 

the damage was mainly concentrated in the middle part of the specimen, as shown in Figure 4. 

SW3 was the squat wall with steel tubes arranged at the middle section. The first crack occurred at the 

controlled rotation 1/2000. In the initial stage of 1/500 cycle, several skew cracks appeared on the left 

side of the wall. However, the propagation of the cracks was suppressed because of the existence of 

steel tubes, and there were some cross bond cracks at the position of steel tubes at the meantime. 

When the controlled rotation was 1/75, large area of concrete spalling between the two steel tubes 

occurred, and the spalling area of concrete made up around 1/3 of the total area of the wall. When the 

controlled rotation was 1/50, the root of the left flange of the wall damaged severely, along with 

significantly load-carrying capacity deterioration, as shown in Figure 3(c). 

SW4 was a squat wall with steel tubes evenly distributed in the cross-section of the specimen. The first 

crack occurred at the upper right corner of the specimen during the controlled rotation 1/1000. When 

the controlled rotation was 1/500, the development of inclined cracks was obviously suppressed by the 

steel tubes. However, the bond crack zone along the height direction of the steel tube formed 

apparently. During the 1/50 cycles, concrete along the height direction of steel tubes spalling severely, 

and four steel tubes exposed. When the controlled rotation was 1/30, the concrete cover in the web of 

the wall was almost completely lost, along with slight damage of flanges, as shown in Figure 3(d). 

There was no obvious shear failure in the specimen. SW4 exhibited excellent deformation capacity 

and stability and worked in a way similar to the rocking wall [8] at the later stage. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The failure modes of the specimens: (a) SW1; (b)SW2; (c) SW3; (d) SW4. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 4. Comparison of damage evolution between SW1 and SW2: (a) 1/500; (b) 1/250; (c) 1/150. 

 

As seen from the above description, steel tubes could not delay the time that the first crack occurred. 

After inserted steel tubes, the development of inclined cracks was suppressed obviously, thus avoiding 

the brittle failure. However, the vertical bond slip cracks would be presented in the connections 

between steel tubes and the concrete after inserted steel tubes. By comparing the failure mode of SW2 

with that of SW3 could be found, steel tubes which inserted into the both sides of the wall could play a 

role in protecting the flanges, so that the specimen was more stable. The failure mode of the specimen 
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was no longer a shear failure after steel tubes were evenly inserted into the wall section. SW4 

combined the advantages of SW2 and SW3 effectively, and showed a good deformation capacity and 

stability. 

3.2. Force-displacement relationship 

The recorded curves of lateral force (P) versus lateral displacement ( for all specimens are shown in 

Figure 5. It was found that the lateral force versus lateral displacement response of SW1 cycled almost 

linearly. The specimen behaved approximately elastically with little residual displacement occurred. 

The energy dissipation and ductility of SW1 were very poor, and the specimen showed the 

characteristics of brittle failure. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Hysteresis and Skeleton curves: (a) SW1; (b) SW2; (c) SW3; (c) SW4; (e) Skeleton curves. 

 

Compared with SW1, SW2 had plumper hysteresis curve, better ductility and plastic deformation 

capacity. However, load-carrying capacity of SW2 was lower than that of SW3. The damage evolution 

of SW4 was more homogeneous than that of SW1 due to the insertion of steel tubes. And this caused 

the damage of SW2 was more severe than that of SW1 at the same controlled rotation before the peak 

load. This in turn led to the reduction of load-carrying capacity. 

The deformation capacity of SW3 was similar to that of SW2. Nevertheless, the load-carrying capacity 

of SW3 was lower than that of SW2. Firstly, the damage of specimen with steel tubes inserted in the 

middle section was more severe than that of specimen with steel tubes inserted in the both sides during 

the same controlled rotation, especially in the flange, and then, the moment capacity of SW2 was 

higher than that of SW3 due to the steel tubes on both sides. Both contributed to the fact that SW2 had 

a higher load-carrying capacity. 

As shown in Figure 5(d), SW4 exhibited excellent deformation capacity and stability with plump 

hysteresis curve. Compared with SW2, the load-carrying capacity of SW4 was decreased slightly. It 

could be noted that the damage at the peak load could be aggravated when the steel tubes inserted into 

the middle section of squat walls. 

Figure 5(e) shows the hysteresis skeleton curves of four specimens. It could be seen that inserted steel 

tubes, especially in the middle section, would decrease the load-carrying capacity of the squat wall, 

which could significantly improve the deformation capacity at the same time. The deformation 

capacity and ductility of the squat wall with steel tubes evenly distributed in the cross-section (SW4) 

was dramatically improved compared with the other specimens. 

L
at

er
al

 f
o
rc

e 
(k

N
)

Top displacement (mm)
-40 -30 -20 -10 0 10 20 30 40

-2400

-1800

-1200

-600

0

600

1200

1800

2400

L
at

er
al

 f
o
rc

e 
(k

N
)

Top displacement (mm)
-40 -30 -20 -10 0 10 20 30 40

-2400

-1800

-1200

-600

0

600

1200

1800

2400 2400

L
at

er
al

 f
o
rc

e 
(k

N
)

Top displacement (mm)
-40 -30 -20 -10 0 10 20 30 40

-2400

-1800

-1200

-600

0

600

1200

1800

L
at

er
al

 f
o
rc

e 
(k

N
)

Top displacement (mm)
-40 -30 -20 -10 0 10 20 30 40

-2400

-1800

-1200

-600

0

600

1200

1800

2400 2400

L
at

er
al

 f
o
rc

e 
(k

N
)

Top displacement (mm)
-40 -30 -20 -10 0 10 20 30 40

-2400

-1800

-1200

-600

0

600

1200

1800

 SW1
 SW2
 SW3
 SW4



6

1234567890‘’“”

ICBMC IOP Publishing

IOP Conf. Series: Materials Science and Engineering 371 (2018) 012035 doi:10.1088/1757-899X/371/1/012035

 

 

 

 

 

 

4. Analysis of test results and discussions 

4.1. Dissipated energy 

The dissipated energy in each cycle could be calculated from the lateral load (P) versus lateral 

displacement () curve as the area bounded by the hysteretic hoop of that cycle. The single-cycle 

energy dissipation Es of each specimen is shown in Table 2. The cumulative energy dissipation Ec of 

each specimen is shown in Figure 6. 

The cumulative energy dissipation capacity of specimens, from high to low, was in the following order: 

SW4, SW2, SW3 and SW1. The single-cycle energy dissipation capacity of SW3 was similar to that 

of SW1 at the early stage. However, the ultimate cumulative energy dissipation capacity of SW3 was 

much better than that of SW1 because of the better ultimate deformation. And this phenomenon also 

occurred between SW4 and SW2. According to observations of the test data, the conclusions are as 

follows: (1) the effect of steel tubes on the energy dissipation capacity in the squat wall with steel 

tubes arranged at both sides was slightly better than that of the squat wall with steel tubes arranged at 

the middle of the section. And the ultimate cumulative energy dissipation capacities were similar 

because of the similar deformation capacity and single-cycle energy dissipation capacity; (2) the 

cumulative energy dissipation capacity of the squat wall with steel tubes evenly distributed in the 

cross-section (SW4) was about three times higher than that of the squat wall with steel tubes arranged 

at both sides (SW2) or the squat wall with steel tubes arranged at the middle of the section (SW3), in 

spite of the doubling of the amount of steel used. And the deformation capacity of SW4 was also 

improved significantly. 

 

Table 2. The single-cycle energy dissipation Es. 

(kN·m). 

 

 

Figure 6. Cumulative energy dissipated of 

the specimens. 

Rotation 

angle/rad 
SW1 SW2 SW3 SW4 

1/2000 0.296 0.419 0.258 0.326 

1/1000 0.713 1.043 0.805 0.946 

1/500 2.026 2.957 2.175 2.703 

1/250 4.862 7.872 5.922 7.437 

1/250 4.683 7.178 5.356 7.985 

1/150 8.353 12.915 9.368 12.200 

1/150 8.216 10.120 7.719 10.077 

1/100  11.396 11.839 15.725 

1/100  7.868 8.857 13.512 

1/75  9.475 11.309 19.950 

1/75  7.469 8.941 18.612 

1/50    31.248 

1/50    25.280 

1/40    26.783 

1/40    21.120 

4.2. Rigidity degradation 

The stiffness of specimens decreased with the cyclic loading for the reason of cumulative 

damnification. The stiffness of specimens under cyclic loading can be evaluated by the index-cyclic 

stiffness, which can be determined as Equation (1): 
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In which, lK  is the cyclic stiffness; 
i

jP  is the peak load of the i th cycle when the deformation is 

controlled as j ; 
i

j  is the peak deformation of the i th cycle when the deformation is controlled as

j ; and n= the number of cycles when the deformation is controlled as j . 

The Kl- curves of specimens are shown in Figure 7. These cyclic stiffness degradation curves are 

compared, and the analysis can be made as follows: 

(1) The initial rigidities of specimens in a lower to higher order were the first for SW3, the second 

SW1, the third SW4 and the fourth for SW2. The initial rigidity of the squat wall could be improved 

by inserting steel tubes into both sides of the wall, and could be reduced by inserting steel tubes into 

the middle section of the wall. The initial stiffness of SW4 was higher than that of SW1, which 

indicated that the enhancing effect of steel tubes arranged at both sides to the initial stiffness of squat 

walls was higher than that of steel tubes arranged at the middle section. 

(2) Due to the interaction between steel tubes and the concrete, the positive initial stiffness of 

specimens was larger than the negative initial stiffness. After several hysteresis hoops, the positive 

stiffness was almost the same as the negative stiffness due to the concrete spalling. In SW4, this 

characteristic was especially obvious. 

(3) In the case of large deformation, the stiffness degradation of SW4 was flat without sundden drop in 

the stiffness. This kind of wall exhibited excellent deformation capacity and collapse resistant 

capability. 

 

 

Figure 7. Comparison of Kl- curves of specimens. 

4.3. Strain distribution of the section 

In order to study the strain distribution of the section of specimens in the process of loading, 6 strain 

gauges (G1~G6) were arranged at the bottom section of each squat wall, and the distance from the 

strain gauges to the foundation beam was 50mm, as shown in Figure 1. The strain distributions of 

states of axial force exerted, cracking, yield, and peak load were shown in Figure 8. The ordinate axis 

represents the strain measured by strain gauges, and the abscissa axis represents the distance from the 

strain gauge to the left edge of the wall. Because of the problem of the strain gauge data acquisition, 

the strain distribution of SW4 was not presented in this paper. Based on the illustrations, the following 

conclusions could be made: (1) After the axial force was exerted, the strain distributions of SW1 and 

SW2 were basically in accordance with the plane section assumption. However, due to the existence 

of steel tubes in the middle section of SW3, the strain of the middle section was smaller than that of 

the two ends; (2) Before the cracking, the strain distributions of specimens basically obeyed the plane 

section assumption. However, after squat walls cracking, the strain distributions of specimens was no 

longer consistent with the plane section assumption. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Strain distributions along the bottom sections of the specimens: (a) SW1; (b) SW2; (c) 

SW3. 

5. Conclusions 

Three squat walls with steel tubes and one RC squat wall were tested and analysed. The main 

conclusions can be summarized as follows: 

(1) The ordinary high strength concrete squat wall showed a poor ductility and energy dissipation, 

with obvious brittle shear failure. 

(2) The deformation capacity of the high strength concrete squat wall was improved dramatically after 

the insertion of steel tubes. After inserted steel tubes, the development of inclined cracks was 

suppressed obviously, and then, the damage evolution of squat walls was more homogeneous at each 

stage. The deformation capacity and energy dissipation capacity of the squat wall with steel tubes 

evenly distributed in the section (SW4) were much better than that of any of the first three squat walls. 

The cumulative energy dissipation capacity of SW4 was about three times higher than that of SW2 or 

SW3, although the amount of steel tubes doubled. 

(3) The initial rigidity of the squat wall could be improved by inserting steel tubes into both sides of 

the squat wall, and could be reduced by inserting steel tubes into the middle section of the squat wall. 

And the enhancing effect of steel tubes arranged at both sides to the initial stiffness of squat walls was 

larger than the weakening effect of steel tubes arranged at the middle section to the initial stiffness of 

squat walls. 

(4) The strain distribution of bottom section of the squat wall was no longer consistent with the plane 

section assumption after the squat wall cracking. Thus, the plane section assumption was no longer 

suitable for the calculation of the peak load of the squat wall. 
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