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Abstract. In the mechanics of porous and powder materials the system of equations 

comprising the pyramid yield criterion together with the stress equilibrium equations under 

conditions of axial symmetry forms a statically determinate system at edge regimes. The 

results presented here for this system are consequently independent of any flow rule that may 

be chosen to calculate the deformation and also independent of whether elastic strains are 

included. The stress equilibrium equations are written relative to a coordinate system in which 

the coordinate curves coincide with the trajectories of the principal stress directions. Then, a 

method of finding the trajectories of the principal stresses is developed. 

1. Introduction 

In the case of several yield criteria widely used in applications, the system of equations comprising the 

yield criterion together with the stress equilibrium equations forms a statically determinate system 

under certain conditions. This system can be studied without using any flow rule that may be chosen to 

calculate the deformation and independently of whether elastic strains are included. In particular, 

much work has been carried out for plane strain deformation. The geometric properties of the principal 

line coordinate system (i.e. the coordinate curves of this coordinate system coincide with trajectories 

of the principal stress directions) for the Tresca yield criterion have been derived in [1]. This result has 

been extended to the Mohr-Coulomb yield criterion in [2]. Several methods are available for 

calculating the field of stress for the Tresca yield criterion. In particular, the R – S method has been 

developed in [3]. Another widely used method is based on Mikhlin’s variables [4, 5]. The R – S 

method has been extended to the Mohr-Coulomb yield criterion in [6]. The pyramid yield criterion for 

porous and powder materials has been proposed in [7]. The R – S method and the method based on 

Mikhlin’s variables have been developed for this yield criterion in [8] and [9], respectively. In the 

present paper, a new method for determining the field of stress under axial symmetry is proposed for 

the pyramid yield criterion. The development of this method requires the generalization of the results 

reported in [1, 2] on axisymmetric deformation of materials obeying the pyramid yield criterion.  

2. Material Model 
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The piece-wise linear yield criterion in terms of the principal stresses 1 , 2  
and 3  proposed in [7] 

reads  

1
2

i j

s sp

  




 

                                                           (1) 

where , 1, 2, 3i j  , i j  and  

1 2 3

3

  


 
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                                                               (2) 

is the hydrostatic stress. Also, s  is the shear yield stress and sp  is the yield stress in hydrostatic 

compression. Both s  and sp  depend of on the porosity,  . In particular, sp   as 0  . In this 

case, the yield criterion (1) approaches the Tresca yield criterion. In what follows, it is assumed that 

the porosity is uniformly distributed. Therefore, s  and sp  are independent of space coordinates. In 

the case of axisymmetric deformation the circumferential stress   is one of the principal stresses. 

Without loss of generality, it is possible to assume that 

3 
      and      1 2 

                                               (3) 

In general, under conditions of axial symmetry it is necessary to consider several edge and face 

regimes of the yield criterion (1). For practical applications, the edge regimes at which 1 2     

are most important. There are four regimes of this kind. Using (1) these regimes can be represented as 

1 2 11, 1
2 2s s s sp p

     

 

 
   

                                           (4) 

in the case of regime 1, 

1 2 21, 1
2 2s s s sp p

     

 

 
   

                                           (5) 

in the case of regime 2,  

1 2 11, 1
2 2s s s sp p
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                                         (6) 

in the case of regime 3, and 

1 2 21, 1
2 2s s s sp p

     

 

 
   

                                           (7) 

in the case of regime 4. In the case of regimes 1 and 2 the hydrostatic stress can vary in the range  

0 sp    and in the case of regimes 3 and 4 in the range 0 sp  . In the case of regimes 1 and 3 

2  
                                                                 (8) 
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and in the case of regimes 2 and 4 

1  
                                                                    (9) 

The velocity equations follow from the associated flow rule. These equations are given in [7]. 

However, they are not involved in the subsequent analysis.  

3. A Geometric Property of Principal Stress Trajectories 

The yield criterion formulated in the previous section should be complemented with the equilibrium 

equations. It is convenient to introduce two coordinate systems, a cylindrical coordinate system 

 , ,r z  whose z- axis coincides with the axis of symmetry of the boundary value problem such that 

its solution is independent of 
 
and a principal line coordinate system  , ,   . The coordinate 

curves of the principal line coordinate system coincide with the trajectories of the principal stresses. 

Without loss of generality it is assumed that the   curves coincide with the trajectories of the stress 

1  
and the   curves with the trajectories of the stress 2 . Since the shear stresses vanish in the 

principal line coordinate system, the equilibrium equations referred to this system take the form [10] 

   1 2

2 10, 0.
rh rhh hr r

h r r h
  

   

 
   

     

   
     

                             (10) 

In the case of regimes 1 and 3 equations (8) and (10) combine to give 
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In the case of regimes 2 and 4 equations (9) and (10) combine to give 
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Eliminating the difference 1 2   in (11) by means of (4) and (6) yields 
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where the upper sign corresponds to regime 1 and the lower sign to regime 3. Eliminating the 

difference 1 2   in (12) by means of (5) and (7) yields 
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s s

h hr
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p p

 
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where the upper sign corresponds to regime 2 and the lower sign to regime 4. It follows from (2), (8) 

and (9) that 1 23 2   
 
in the case of regimes 1 and 3 and 1 23 2     in the case of regimes 2 

and 4. Using these equations together with equations (4) to (7) it is possible to express 1  
and 2  in 

terms of  . As a result, 



4

1234567890‘’“”

ICBMC IOP Publishing

IOP Conf. Series: Materials Science and Engineering 371 (2018) 012059 doi:10.1088/1757-899X/371/1/012059

 

 

 

 

 

 

 
   1 21 2 4 3, 1 2 3s s s sk k          

         (15) 

in the case of regime 1,  

 
   1 21 2 3, 1 2 4 3s s s sk k          

  (16) 

in the case of regime 2,  

 
   1 21 2 4 3, 1 2 3s s s sk k          

  (17) 

in the case of regime 3, and 

 
   1 21 2 3, 1 2 4 3s s s sk k          

  (18) 

in the case of regime 4. In equations (15) to (18),  2 3s s sk p .  

In the case of regime 1, eliminating 1  and 2  in (13) by means of (15) yields 

 

   

 

 

 

ln ln1 2 1
0, 0

2 1 2 1

s s

s s s s

rh hk k

p p

  

       

   
   

     
. (19) 

Each of these equations can be immediately integrated to give 

 
 

   
 

 1 2

3 3
ln ln 1 ln , ln ln 1 ln .

1 2 1

s s

s s s s

k k
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k p k p
 

 
 

   
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Here  1C   is an arbitrary function of only   and  2C   is an arbitrary function of only  . 

Eliminating   between the equations in (20) yields 

 
 

 
 

   1 2

3 3
ln ln ln

1 2 1

s s

s s

k k
rh h C C

k k
        

. (21) 

It is seen from this equation that different choices of the functions  1C   and  2C   merely change 

the scale of the   and    curves, respectively. Therefore, it is always possible to choose 

   1 2 1C C   . Then, equation (21) becomes 

 

1

1

1 2
1, .

1

t s

s

k
rh h t

k
 


 


  (22) 

In this case equation (20) supplies 

 

0

0

3
1, .

1

t s

s s

k
h t

p k



  


  (23) 

Using equations (13) to (18) regimes 2, 3 and 4 can be treated in a similar manner.  
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4. Mapping between the Cylindrical and Principal Line Coordinate Systems 

The cylindrical and principal line coordinate systems are shown in Fig. 1 where   is the orientation 

of the   curves relative to the r  axis. 

 

 

Figure 1. Cylindrical (r, z) and principal line (, ) coordinate 

systems. 

 

It follows from the geometry of this figure that 

 

cos , sin , sin , cos .
r r z z

h h h h      
   

   
    

       (24) 

If regime1 is operative then this equation and (22) result in 

 
1 1

sin cos
cos , , sin ,

t t

r r z z
h h

rh rh

 
 

   

   
    

      (25) 

where h h . The compatibility equations are 

 

2 2 2 2

, .
r r z z

       

   
 

          (26) 

Substituting (25) into (26) gives 

 

 

1 1 1

1 1 1

1

1 12

2

1

1 12

cos sin sin cos
cos sin ,

sin cos cos
sin cos .

t t t

t t t

h t h
h

rh rh r h

h t h
h

rh rh r h

     
 

   

    
 

   

 

 

   
   

   

   
    

      (27) 

Multiplying the first of (27) by sin  and subtracting from the result the second of (27) multiplied by 

cos
 
yields 

 
1 1

1

2 2

cos
.

t t

t h

rh r h

 

 

 
  

    (28) 
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In a similar manner, if the first and second of (27) are multiplied by cos  and sin
 
respectively, and 

the sum of the resulting equations is taken, it is found that  

 

1 0.t h
rh



 

 
 

    (29) 

Using a standard procedure it is possible to show that (28) and (29) is a hyperbolic system of equations 

for h and   
with characteristic curves (termed    

and  
 
lines) given by 

 
1

1

1
.

t

td

d rh



 
 

  (30) 

where the lower and upper signs refer to the   lines and   lines respectively. The characteristic 

relations are 

 

1

1

cos
.

t h
d dh d

h r t


    

 
 (31) 

As before, the lower and upper signs correspond to the   lines and   lines respectively. Equations 

(30) and (31) should be solved together with equation (25) for r. This system of equations is similar to 

that that describes axisymmetric flow of Tresca’s solids [11]. Numerical techniques for solving the 

latter are well documented [11]. These techniques can be adopted for solving the system of equations 

derived. Once this system has been solved, equation (23) supplies the distribution of   and equation 

(15) the distributions of 1  and 2 . Since the angle   has been found, the distribution of the stress 

components in the cylindrical coordinate system follows from the standard transformation equations 

for stress components. 

Regimes 2, 3 and 4 can be treated in a similar manner. 

5. Conclusions 

On the assumption of axial symmetry conditions the system of equations comprising the pyramid yield 

criterion and the equilibrium equations has been studied in a curvilinear orthogonal coordinate system 

in which the coordinate curves coincide with trajectories of the principal stress directions. It has been 

shown that the scale factors of the coordinate curves should satisfy equation (22) in the case of regime 

1 or similar equations in the case of the other edge regimes of the pyramid yield criterion. Using this 

equation a method of finding stress solutions has been developed. In particular, one of the scale factors 

of the principal line coordinate system and the orientation of the trajectory of the major principal stress 

should satisfy equations (28) and (29). These equations form a hyperbolic system with the 

characteristic curves given by (30) and the characteristic relations given by (31). Numerical techniques 

for solving this type of equations are available in the literature [11]. 
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