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Abstract. Background-oriented Schlieren (BOS) technique is a recently invented non-intrusive 

flow diagnostic method which has yet to be fully explored in its capabilities. In this paper, 

BOS technique has been applied for investigating the general flow field characteristics inside a 

generic scramjet inlet-isolator with Mach 5 flow. The difficulty in finding the delicate balance 

between measurement sensitivity and measurement area image focusing has been 

demonstrated. The differences between direct cross-correlation (DCC) and Fast Fourier 

Transform (FFT) raw data processing algorithm have also been demonstrated. As an 

exploratory study of BOS capability, this paper found that BOS is simple yet robust enough to 

be used to visualize complex flow in a scramjet inlet in hypersonic flow. However, in this case 

its quantitative data can be strongly affected by 3-dimensionality thus obscuring the density 

value with significant errors.  

1.  Introduction 

The Background-Oriented Schlieren (BOS) technique, which has been gaining its popularity today, is 

particularly suitable for calculating the density increase across an oblique shock. The calculated 

density gradient can be used to estimate the overall performance of a scramjet inlet using the concept 

shown by Idris et al. [1]. Compared to their method where average isolator flow properties were 

inferred from the pressure map on sidewall, two-dimensional BOS technique would result in 

spanwise-integrated density field for the whole isolator [2]. Concurrently, a three-dimensional BOS 

which requires simple modifications from two-dimensional method could provide truly tomographic 

reconstruction of the isolator density-field along the spanwise direction [3][4]. Hence, the calculated 

isolator exit Mach number and subsequently the inlet-isolator performances by using BOS method will 

be more reliable and accurate.  

The method was first presented by Dalziel et al. in late 1990s as the “synthetic schlieren” [5 – 7]. 

They demonstrated that the displacements of light-ray path from random dots set up on the 

background of a changing density volume can be processed by using cross-correlation software 

“borrowed” from Particle Image Velocimetry (PIV) methods. The results are in the form of light-ray 

path-integrated density-gradient field, which explains why they associated it with the classical 
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schlieren technique.  At about the same time, Meier independently introduced and patented the 

concept of BOS in Germany [8].  

This relatively new method has very simple setup, which requires only high resolution camera 

(typically Digital Single-Lens Reflex (DSLR) camera) and a suitable background image, thus making 

it adaptable for many applications. For example, Richard and Raffel visualised compressible vortices 

from spinning helicopter rotor blade using BOS [9]. They took images of a hovering helicopter with 

the camera positioned at an angle such that the tip of the rotor blade was set against background view 

of a grass field. The vortices from the blade tips were shown to be interacting with its engine exhaust 

plume.   

Elsinga et al. compared this method with another quantitative schlieren technique called Calibrated 

Colour Schlieren (CCS) in analysing a two-dimensional wedge-plate model in flow Mach number of 

1.94 [2][10]. BOS and CCS were shown to be effective in visualising shock and expansion wave. The 

resultant flow field properties calculated using BOS were close to the analytical value predicted from 

oblique shock relations and Pandtl-Meyer expansion theory for that particular geometry.  

Venkatakrishnan and Meier applied this method to predict the flow around axisymmetric cone-

cylinder geometry in a freestream Mach number of 2 [3]. Filtered back projection algorithm 

introduced in the article allows the authors to obtain slices of two-dimensional density-field around the 

model. The calculated density matched the published data of cone tables [11]. There are many other 

exciting and interesting examples of recent applications of BOS in flow-diagnostics, however, there 

has been no attempt yet to apply this method for scramjet inlet-isolator investigations. 

2.  Basic BOS Theory 

The theory for BOS is relatively simple and can be described using figure 1 below. In the figure, x-

axis is parallel to the freestream and starts at the model tip at half-symmetry plane, y-axis is parallel 

with the vertical plane and z-axis is along the line of sight.  Random patterns of suitable shapes and 

sizes are printed onto single image and fixed on the background plane. The background plane is 

positioned at a distance (ZD) from the middle plane of density gradient volume in investigation. The 

lens of the image capture device is located at length (ZB) from the background plane. The notation (ZI) 

in the figure denotes the focal length of the lens, where the light rays from the background plane 

converged onto the camera chip. From the figure, consider that as the control volume changes in 

density, the light ray from a particular point on the background plane will shift by (  ) on the camera 

chip. This displacement can be calculated by using the PIV cross-correlation software using inputs of 

two still images of “wind-off” and “wind-on”. The wind-off is the initial condition where the density 

field is known and is usually the wind-tunnel condition without flow. The wind-on, as the name 

implies, refers to the condition where the density field changes due to wind tunnel flow. This 

displacement is due to the light path being deflected vertically by angle   . The deflection angle is 

typically very small and can be obtained by: 

           (  )     
   

  
 (1)  

Here,     denotes the virtual displacement of the point on background image and can be related to 

   displacement detected by the camera by: 

 
   

  
 

  

  
 (2)  

 

The deflection angle    can be related to change in refractive index 
  

  
 of the volume by: 

   
 

  
∫

  

  

      

      

   (3)  
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Here,    denotes the initial refractive index of the flow, “wind-off” conditions prior to change in 

density field. The change in refractive index 
  

  
 can be related to density gradient 

  

  
 by partially-

deriving the Gladstone-Dale equation: 

 
      

  
 

     

  
 (4)  

  

  
  

  

  
 (5)  

 

Here,   is the Gladstone-Dale constant and its value depends on type of gas used.  

 

Equation (1) to (5) can be similarly applied to consider the light path deflection on x-axis. Thus, the 

final density gradient at any point in the flow field is a product of  
  

  
  and  

  

  
. 

 

 

Figure 1. Deflection of light path from background image due to change in density gradient. 

3.  Cross-correlation Theory 

The background images of wind-off and wind-on can be discretized into a finite number of 

interrogation windows for cross-correlation analysis. The windows must be of the same size, W, and 

contains enough shape elements for analysis. Since a window could contain many elements that have 

different displacement magnitudes, it is best to have the smallest window size possible to have a good 

representative of average particles displacement (see figure 2). The cross-correlation function can be 

calculated by using equation shown below [12]: 

 

         
∑            ̅                  ̅ 

 
   

 ∑            ̅ 
 ∑            ̅ 

  
   

 
       

 (6)  

 

Here,     denotes the pixel intensities at location (x,y) within the interrogation window in the wind-

off image. Similarly,    denotes the pixel intensities at location (x,y) within the interrogation window 

in the wind-on image.   ̅ and   ̅ are the average    and    for the whole window size.          is the 

correlation function in terms of displacement in x-y axis,    and   . The function reaches peak value 

at the coincident points of elements match between wind-off and wind-on images. 
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Figure 2. Movement of elements in an interrogation window for cross-correlation analysis 

Depending on the interrogation window size, the computing requirements could be really 

expensive. Thus, Fast Fourier Transform (FFT) approximation is typically used to produce each 

displacement vector [13].  However, Pust had shown that Direct Cross Correlation (DCC), which 

directly solves the equation without approximation, is significantly better in producing realistic results 

in comparison to FFT [13]. 

4.  Experimental Setup 

The BOS setup for current scramjet inlet-isolator model was applied onto scramjet inlet model similar 

to Idris et al. [1]. The scramjet inlet was subjected to dry air flow with static pressure of 1220 Pa, 

static temperature of 62 K, total pressure of 645 kPa, total temperature of 370 K and Mach number of 

5.  

Due to the sensitivity of BOS system the model should be located halfway between the background 

and camera lens (i.e ZD = 0.5ZB) [3][14]. Hargather and Settles demonstrated that as the model is 

gradually moved towards the background, the sensitivity of system drops significantly [14]. The 

problem with this requirement is that with such small isolator height of only 6.8 mm, a sufficient 

compromise of camera focusing could not be found. If the lens is focused on the background image, 

then isolator section would appear heavily blurred, rendering the resultant image useless. On the other 

hand, if the focusing is made onto the middle plane of the isolator section, then the patterns on the 

background image would be too out of focus to be detected by cross-correlations software. 

Compromise was made by applying the background image onto one sidewall, while the other sidewall 

provided the optical access (see figure 3). We believe that sensitivity was not significantly 

compromised since the shockwaves inside the isolator section are strong and can be detected easily.  

 

 

Figure 3. Schematic of scramjet inlet-isolator with image of pattern glued on the inside of sidewall 
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The setup for BOS experiments is shown in figure 4. The camera used was Canon DSLR EOS-

600D with lens of focal length 135 mm. The camera was positioned as such the lens touched the test-

section window. This was done in order to increase the ratio of ZD/ZB and thus increasing the 

sensitivity in measurement. The camera was set to capture a wind-off image after the test section was 

vacuumed right before the tunnel starting. The camera was also set to capture a series of image at 4 fps 

during the tunnel run, and the best image was chosen for wind-on. The two images chosen were then 

processed together to obtain the desired density gradient field.  

 

 

Figure 4.  Top view schematic of BOS experimental setup 

Two red-head lamps with power of 650 W each were directed towards a large white screen. The 

reflective lights from the screen gave uniform illumination to the background image printed on 

sidewall. The experiments were conducted in total darkness except for the two light sources to obtain 

the best contrast for easy detection of particles deflection.  

The pattern for the background image was made using open source general PIV post-processing 

software, PIVMat
©
 [15] written in MATLAB

©
 environment. The software was set to draw 700,000 

black particles of diameter 0.15 mm each in random pattern on an A4 sized image. Effectively, there 

were 11.22 particles/mm
2
 and the filled surface ratio was 0.198. The image was then printed on 

projector transparency sheet (A4 size) to allow for background illumination of the particles. A small 

rectangular strip of size 55 × 6.8 mm
2
 was cut and pasted onto the inner face of sidewall as shown in 

figure 4. 

5.  Results and Discussion 

The raw pre-processed images of wind-off and wind-on conditions are shown in figure 5. Any changes 

in particles cluster shapes and locations cannot be detected by naked eye. The model also experienced 

slight clockwise rotation in figure 5(b) due to heavy downwards force on the compression ramps. Even 

though the rotation was very subtle and cannot be observed with naked eyes, it is still of significant 

magnitude in comparison to each particle deflection value and it can influence their final value as 

calculated by cross-correlation software.  Thus, it must first be corrected prior to processing. The 

model movement was corrected using ‘cp2tform’ function in MATLAB 7.10.0 (R2010a), where 

control points were selected on both figures and the algorithm automatically applied rotation and 

translation on figure 5(b), so that the control points on both figures agree with each other. 
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Figure 5. Pre-processed images of (a) wind-off condition; (b) wind-on 

 

Both figures were processed by using open-source PIVLab
©
 cross-correlation software written by 

Thielicke and Stamhuis [16]. The software’s capability to cross-correlate PIV data has been 

demonstrated in papers by Mahanti et al.[17], Mirsepassi and Dunn-Rankin [18] and Ryerson and 

Schwenk [19]. The software was chosen since because of its robustness despite being freely available. 

Commercial software for PIV processing typically has more features but tends to be very expensive.  

The small isolator size prohibited the use of small interrogation window size. This is due to 

requirements of sufficient particle elements in each interrogation window. Using smaller particles size 

and higher particles density in the background image might circumvent this issue, but they were 

limited by the printing capabilities. Thus, to overcome this problem, interrogation window of the size 

192 × 192 pixel
2
 was chosen, with overlap value of 96%. Spatial resolution was improved 

significantly with high overlap value, but it comes with large computing cost. If using DCC scheme, 

rendering all displacement vectors took about 7 hours on a Dell M6300 mobile workstation with 

Core2Duo Extreme X7900 (2.8 Ghz) processor and 4 GB of RAM. The images in figure 6 were also 

processed using FFT (Fast Fourier Transform) cross-correlation scheme, and the results came at much 

faster of less than 5 minutes on the same laptop. Comparison of the density gradient using standard 

colour schlieren (taken from Idris et al. [1]), DCC and FFT are given in the Fig. 6 below. 

From figure 6(a), we can observe that a large flow separation at shoulder produced a very strong 

separation shock that propagates downstream in the form of a shock-train. The shock-train structure is 

very complex and identifying each shock location was not straight forward. There are at least two 

more separations that can be detected, one at just downstream of cowl-tip and another one at further 

downstream. Each separation would produce two shockwaves of their own, a separation shock and a 

re-attachment shock. All background shock-waves reflected as they propagated downstream and 

interacted with each other creating an overall complex system of shocks.  

Figure 6(b) and (c) shows that all part of the shock-train can be visualized using both the DCC and 

the FFT calculation scheme of BOS. Even better, the BOS method detected two weak shocks that are 

barely visible in the colour schlieren image, at the end of the isolator section. However, since BOS 

detected only density gradient, and by definition a shockwave is a density gradient; region without a 
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shockwave should only have colour ‘dark blue’ as per the legend in figure 6. This is not the case, such 

as that in figure 6(b) and 6(c) show readings of density gradient between successive shockwaves. The 

density gradient field calculated by the FFT method (see figure 6(c)) suffer less error than the one 

calculated by DCC (see figure 6(b)). This is because the FFT ignored small movement vectors inside 

each interrogation window in order to decrease its computational time thus making its signal to noise 

ratio more favourable.  

 

 

Figure 6. Schlieren images of baseline scramjet inlet-isolator model; (a) Colour schlieren (taken with 

permission from Idris et al.); (b) schlieren image rendered from density gradient calculated using 

Direct Cross Correlation (DCC) of BOS data; (c) schlieren image rendered from density gradient 

calculated using Fast-Fourier Transform Cross Correlation (FFT) of BOS data 

The density of the flow exiting the isolator section can be calculated easily by integrating the 

density field and inserting the boundary condition. The boundary condition is the value of density at 

the start of isolator section and this is a known value of 0.29 kg/m
3
[1]. If we do a line-integration at 

the middle of the field, from upstream towards the exit of the isolator, the density at the exit is 1.52 

kg/m
3
 for DCC and 1.01 kg/m

3
 for FFT. Both values are off by a significant margin from the actual 

density calculated using equation of state with known value of pressure and temperature, which is 

about 0.39 kg/m
3 
[1]. We believe that the error is not from the BOS setup per-se, instead, we argue that 

using the BOS method is not suitable for the current case. This is because, shock-train in a scramjet 

isolator is typically very complex and any schlieren based measurement, be it traditional, colour or 

even BOS will be presented with a big problem due to the smearing of shock waves as viewed by an 

observer. As explained by Raffel, the BOS is a line-of-sight integration technique thus if the flow is 

not fully 2-dimensional then the density-gradient will be distorted [20]. The flow inside the isolator 

suffered from 3-dimensionality effect close to the sidewall region [1]. Thus the shock waves appeared 

to be thicker than their theoretical size and their width was wrongly accounted into when the density 

gradient field was integrated.  
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6.  Conclusion 

An exploratory study of applying BOS method to characterize a scramjet inlet-isolator has been 

performed. The setup could not be simpler, requiring only a DSLR camera and suitable background 

image. The processing software needed for rendering the density-gradient field is open-source and 

easily available. Using FFT scheme of calculating cross-correlation is more beneficial in term of 

computational time and noise rejection. However, using schlieren-based density-measurement for 

scramjet inlet-isolator investigation would not produce an accurate reading of density since the 

shockwaves would appeared smeared to the observer.  
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