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Abstract. Whilst UAV offers a potentially cheaper and more localized observation 

platform than current satellite or land-based approaches, it requires an advance path planner 

to reveal its true potential, particularly in real-time missions. Manual control by human will 

have limited line-of-sights and prone to errors due to careless and fatigue. A good 

alternative solution is to equip the UAV with semi-autonomous capabilities that able to 

navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-

and-practical path optimizer based on the classical Travelling Salesman Problem and 

adopts a brute force search method to re-optimize the route in the event of collisions using 

range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses 

Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and 

avoid collision at once. Although many researchers proposed various path planning 

algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of 

real-time collision detection optimizer. Therefore, we explore a practical benefit from this 

approach using on-board Arduino and Ardupilot controllers by manually emulating the 

motion of an actual UAV model prior to test on the flying site. The result showed that the 

range finder sensor provides a real-time data to the algorithm to find a collision-free path 

and eventually optimized the route successfully.   

1.  Introduction 

The path planner is considered a key element of the unmanned aerial vehicle (UAV) navigation 

system. Basically, its task is to compute the optimal path from a start point to an end point. Unlike the 

trajectories for commercial airlines, UAVs trajectories are constantly changing depending on the 

terrain and conditions prevailing at the time of their flight. A simple trajectory optimization for typical 

UAVs is to find a shortest path using search algorithms as in [1], though other objectives, e.g., 

distance travelled, the average altitude, the fuel consumptions are equally important but not covered 

within the scope of this work. As an example, the authors of [2] proposed the use of a genetic 

algorithm (GA) to improve the TSP exploration and better avoid local minima when searching for an 

optimal path. The authors of [3] also use a SGA, but the collision is not included.  

     In this paper, we study the effectiveness and the practicality of UAV path planner and collision 

detection using an on-board controller for fixed-wing UAVs. Essentially, we combine brute force and 
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non-deterministic algorithms to develop an operational path planner modified from  [4], and the 

avoidance based on [5] but we use a laser range finder instead. We present two important 

contributions. First, we propose a simple integration between Ardupilot (APM) and Arduino Mega, 

which mutually work to optimize the route as well as avoiding obstacles. This allows us to use a 

generic optimization algorithm (without major modification) as the search algorithm. In our case, we 

use the Nearest Neighbour (NN) and the Simple Genetic Algorithm (SGA), but these could be 

replaced by other algorithms. Second, we present a technique to combine both the SGA and the NN 

while minimizing the communication between the processes in order to achieve a near real-time 

performance. Both algorithms have been widely used for robot path planning. However, to our 

knowledge, there exists no rigorous comparison between the two algorithms when applied to this 

particular problem. The results we present in this paper provide a clear insight how to develop a 

simple algorithm for UAV path planning in real complex environments. The remainder of this paper is 

organized into sections. Section 2 provides the details of the UAV specification. We present in Section 

3 the methodology to combine and integrate the algorithms. And finally we include our result and 

conclusion in Sections 4 and 5, respectively. 

2.  UAV Specification 

This study utilizes a fixed-wing model aircraft (model X-UAV Sky surfer X8) with 1.4 m wing 

span, 0.95 m length and weighs about 0.6 kg. The body is made of Expanded PolyOlefin (EPO) foam 

and powered by a brush-less motor. The flap mechanisms are activated by four servos using an 

Ardupilot (APM) as an on-board flight controller. The built-in proportional-integral-derivative (PID) 

controller uses various input parameters (e.g. airspeeds, roll rate, yaw rate, etc.) through a 6 degree-of-

freedoms (6-DOF) inertial measurement unit (IMU) to achieve in-flight stability. A Global Positioning 

System (GPS) unit is also installed to provide its position (latitude, longitude) during navigation. In 

addition, a separate Arduino Mega is installed as a path-planner and collision module where the 

algorithm proposes in this paper executes. A picture of the UAV is shown in Figure 1.  

 

 

Figure 1. X-UAV Sky surfer X8 model aircraft. 

 

This UAV features a typical 4-channel setup with a single propeller where its stability depends on the 

deflection angle of the control surfaces such as aileron, rudder, and elevator as shown in Figure 2 

below. 

3.  Methodology 

    It is worth mentioning here that, the UAV can fly remotely with good stability using APM 

controller even without a path planner. Although APM has its own mission planner, it does not have 

the optimizing and re-routing capabilities. Hence, we propose a separate module to handle the path-

planning and collision avoidance algorithm to speed up the computation. In general, the UAV route is 

made from a series of waypoints called target points (TPs). We define that TP is a set of points where 

the UAV has to visit or reach in order to cover certain areas. TPs can be a random or specified 

waypoints defined by users within the area of interest. Then, the path optimizer would compute the 
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best route that covers all TPs in a way that it minimizes the distance and the number of crossing paths. 

In real-time UAV mission, the pre-planned path is considered valid, unless there is a potential 

collision that requires real time re-routing. In order to do this, the optimizer and the obstacle avoidance 

module has to work together to optimize a return journey that begins from a specific point. Therefore, 

we relate this problem to a classical Travelling Salesman Problem (TSP) [6] with a slightly modified 

algorithm to embed collision avoiding capabilities. 

 

Figure ‎2. Control surface specification (                        .  

3.1.  Travelling Salesman Problem 

TSP simply rules the salesman to plan a return journey through all cities so that it makes the 

most profit without visiting any cities twice. The profit can be any functions that contribute to his 

profit, e.g., distance, flight time. From graph theory, TSP can be described as follows:  

               TSP = (G, f, t)  

where, G = (V, E) is a complete graph,  f is a function V×V  Z,  and  t ∈ Z, G is a graph 

that contains a travelling salesman tour with cost that does not exceed t in case t is restricted.  

 

 

Figure 3. A simple TSP routing problem. 
 

Figure 3 illustrates how a shortest return path from point A is obtained using TSP. Let us route Path1 

from A, B, C, D, E and A and route Path2 from A, B, C, E, D and A. Computing the length of Path1 

results in 24 units and Path2 has 31 units respectively. Obviously, Path2 is favourable due to shorter in 

length. Solving this kind of problems over hundreds of points are complex; therefore, a systematic 

algorithm is needed. Mathematically, TSP generalizes the question of Hamiltonian circuit in a graph as 

shown in Eq.(1).  
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Where, x is the city and i =1,2,3,…n  represents  the number of cities. There are numerous methods 

available to solve TSP. Among those methods, we favour a brute force method due to its simplicity 

and fast i.e., Nearest Neighbour. In addition, we combine the brute force with a meta-heuristic 

evolutionary algorithm SGA proposed in [7] by adopting Lin-Kernighan tour. 

3.2.  Routing Algorithm 

        SGA belongs to the larger class of evolutionary algorithms (EAs), which generate solutions using 

techniques inspired by the evolution theory. Its heuristic search mimics the process of natural 

evolution through selection, crossover and mutation within the gene in the chromosome. This method 

provides a wider search spectrum to locate the global solutions in optimization problem. Due to its 

nondeterministic nature, SGA lacks of real-time capability and time consuming. This is critical in the 

operation that requires instant decisions such as disturbance, collision or lost tracked from its original 

route. Moreover, the delay could prolong the UAV in an ‘unguided state’ before the algorithm 

produces a new solution. Therefore, we explore a simple brute force method using NN to take over the 

‘unguided state’ and only kick in when the path collides with obstacles. As opposed to SGA, NN is 

rather simple in both constructions and operations where it always favours the nearest point. Thus, the 

decision can compute almost instantly and simple to process on any on-board controllers.  

3.3.  Collision Avoidance 

        Collision avoidance measures time of flight between the UAV and the obstacles to obtain the 

distance if the beams collide with an object. Using the speed of light as a constant, the laser 

rangefinder (LIDAR) sensor calculates the duration between the time a pulse is sent and the time it is 

received and then determines the distance to the object. In this project, a tiny rangefinder Lite 3 from 

Roboshop.com is used as it provides reliable and extremely precise measurements with great 

repeatable accuracy and short response time up to 500 measurements per second and can measure up 

to 40 m measuring range. Moreover, the communication to the module is simplified via I2C protocol 

and highly compatible with Arduino Mega. Basically, the distance,   between the two points is given 

by Eq.(2); 

  
  

 
                                                                         (2) 

where   is the speed of light              in the atmosphere and   is the amount of time for the 

rount-trip between two points given by Eq.(3). 

  
 

 
                                                                          (3) 

where   is the phase delay made by the light travelling and   is the angular frequency of the optical 

wave. 

Substituting Eq.(2) into Eq.(3) yields,  
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where,   is the wave length of 
 

 
 ,    is the part of phase delay that does not fulfil  ,   is the integer 

number of wave half-cycles of the round trip and    the remaining fraction part.  

The collision mechanisms built on a single laser rangefinder which is pointing to five different 

directions by rotating (motorized) the sensors as shown in Figure 4 below.  

The pointing directions of the LIDAR are prefixed with an RF for rangefinder followed a 

specific direction, i.e., head, up, down, left and right. The state of each direction of the 

rangefinders is used to control the deflection of rolling angles (Aileron), yawing angles 

(rudder) and pitching angles (elevator). This setup provides narrow angle collision detection 

within 20 m at nominal glider cruising speed of 10 m/s. That means; the controller has two 
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seconds to compute a new avoiding route before collision with approximately 1000 readings. 

Depending on the state of the sensors, a decision is based on a look-up table to command a 

necessary control strategy to the APM for every condition as shown in Table 1. 

 

 

Figure 4. LIDAR setup based on motorized pointing direction. 

 

Table 1. A look-up decision table for collision avoidance. 

 

Case 

Rangefinder Status (1 = block, 0 = clear) 

Decision 

Surface control 

RFleft RFright RFup RFdown RFhead Aileron 

(  )  

Rudder 

(  ) 

Elevator(  ) Throttle (%) 

1 0 0 0 0 0 Proceed 0 0 0 0 

2 1 1 1 0 0 Proceed 0 0 0 0 

3 0 1 1 1 1 Left turn -20 0 -10 +5 

4 0 0 1 1 1 Left turn -20 0 -10 +5 

5 0 0 0 1 1 Left turn -20 0 -10 +5 

6 0 0 0 0 1 Left turn -20 0 -10 +5 

7 1 0 1 1 1 Right turn +20 0 -10 +5 

8 1 0 0 1 1 Right turn +20 0 -10 +5 

9 1 0 1 0 1 Right turn +20 0 -10 +5 

10 1 1 1 1 1 Sharp Climb 0 0 -30 +20 

11 1 1 1 0 1 Sharp Climb 0 0 -30 +20 

12 1 1 0 1 1 Climb 0 0 -15 +10 

13 1 1 0 0 1 Climb 0 0 -15 +10 

 

The signals of the control surfaces are operating based on pulsing and monitor. The pulse's interval is 

between 1 to 2 milliseconds. Note that, regardless of the state of other sensors, for as long as the RFhead 

is 0 or unblocked, the decision is remained. Otherwise, the decision depends on the positioning of the 

obstacles detected by the other sensors. As for the case of 10-13, the UAV has to climb up or sharply 

climb, but it remains on the same original route with elevated trajectories. For the case of 3, 7, 8 and 9, 

the decision is chosen based on the direction which is clear from obstacles. However, for the case of 4, 

5 and 6 where both left and right sensors are clear the decision, whether to take left turn or right turn 

are not defined. For this case, a simple rule is applied considering the distance of the next point to the 

original point on the route which is taken care by NN algorithm and then re-route by SGA. In order to 

do this, NN will search and calculate the nearest point during collision and assign a set of temporary 
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TPs to navigate to a new TP. While NN diverting the route through TP, S will take its current position 

and calculate for a new optimal route and then terminate NN routine. This process repeat if the UAV 

faces the obstacles. 

3.4.  Algorithm Configuration 

        Within SGA, the selection of the parents is based on Roulette Wheel Selection (RWS) and a 

single-point crossover and flip-bit mutation. We set the probability of crossover    and    to be 0.8 

and 0.01 respectively. The population size is set to 10 and max generation to 10. As for the NN, there 

is no additional setting other than computing the nearest trajectory point. The combined algorithm for 

both methods is shown in the algorithm listing below.  

 
//Genetic Algorithm main routine 

Initialization : Assign SGA parameters, such as pc, pm, popsize, max_generation, home, etc. 

Generate chromosome of [popsize],  

     Assign [nearest point] as a starting point 

                    Permutate randomly  

                    Evaluate their fitness values.  

                    gen = 0. 

Main() 

While generation < max_generation. 

         Select individuals [popsize] from current gen using RWS to generate the mating pool. 

         While population < popsize  

Select two individuals from the mating pool randomly  

Perform single-point crossover with probability pc,  

Perform bit-flip mutation for every gene of the offspring with probability pm.  

                Then insert the mutant into the new population. 

                Evaluate the fitness value for every new individual in the new population. 

                  Replace the current population with the new population. Generation = generation+1. 

Submit the fittest individual as the results of GA to APM controller to execute.     

End 

//Nearest Neighbour Interrupt routine 
Read sensor states 

    Refer decision look-up table 

    Determine the nearest point 

    Assign temporary target point 

    Send command to APM to navigate to a temporary target point 

    Assign [nearest point] to GA as the next point 

Return  

 

Ideally, the original solution produced by SGA algorithm alone would continue valid for as long as the 

route does not interfere with any obstacles.  

4.  Simulations 

A simple functional test performed to compare the solution of three different algorithms namely 

Random, NN and SGA (based on Lin-Kernighan Tour) and is comparable with Concorde TSP Solver. 

The test involves 100 random points within a defined space. The simulation result for every algorithm 

as shown in Figure 5 below.  

 

All algorithms have been run using 100 random points shown in Figure 5(a). Obviously, the solution 

from Random algorithm is not appropriate for flight path planning (too many crossing paths). A 

slightly better solution produced by NN algorithm is shown in Figure 5(c) with several zigzag paths. 

As discussed earlier, NN is good in determining the nearest point quickly without having to rely on 
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expensive processing time and yet the route is acceptable. Interestingly, the solution in Figure 5(d) has 

shown a smooth path without any path-crossing, and it is solved using SGA with slightly longer 

computing time with significant improvement on the length. So, SGA could produce a smooth-and-

shorter path, but it takes slightly long as compare to the NN. Therefore, we take advantage of the 

instantaneous decision by NN and the solution optimality from SGA to provide the best from both 

worlds to embed a simple-and-practical algorithm for UAV. 

 

                   
 

                              (a)                                        (b)  

 

                
 

                                 (c)                                                                              (d)  

 

Figure 5.  (a) 100 random points, (b) A solution using Random algorithm (t = 0.57s , l =5283), (c) A 

solution using Nearest Neighbor (t = 0.75s, l =962), (d) A solution using Genetic Algorithm (t = 0.91s, 

l =767). 

5.  Result and Discussion 

The algorithm was tested with a simple obstacle starting from a point called Home. If no obstacle 

detected along the route, it would follow the pre-planned path which begins from ‘Home’ all the way 

to 1, 2, 3…11 and returns to ‘Home’ as shown in Figure 6(a). Ideally, the UAV would follow the pre-

planned route from the beginning till the end. However, if the pre-planned route intersects with an 

obstacle on the heading direction (RFhead =1), the flight path is diverted from Home to point 11 through 

two temporary points derived from NN algorithm that seeks a nearest point and eventually diverts its 

journey to point 11 instead and continue to 10, 9…2, 1 and return Home (Figure 6(b)). This is because 

at the point of collision, NN sees that TP 11 is nearer that TP 1 hence the decision is to turn right 

instead. It is observed that while NN is calculating a nearest point, SGA runs its permutation and 

rearranges the way point from 1, 2, 3…10 and 11 previously to a new way point beginning from 11, 

10, 10…2, 1 and returns Home. Since NN algorithm runs in the interrupt mode, it provides a sufficient 

time for the on-board processor to compute S hence reduces the ‘unguided state’ delay.  
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Figure 6. (a) Pre-planned route without obstacles. (b) Simulated real-time route with an obstacle. 

 

Figure 6 shows the combined approaches used here could provide a simple real-time path planning 

and obstacle avoidance solution for the UAV researchers and hobbies out there. Since the scope of this 

work is to simulate the behavior of the UAV along the route, we only show a typical motion by 

moving the UAV manually. However, the position tracking data is not presented al it can be easily 

extracted from a GPS module. Moreover, due to the lack of the actual and real-time flight testing, the 

detail response of the control surfaces is not presented here. We reserve the detail observation of the 

flight performance during the real-time performance test. 

6.  Conclusion 

In conclusion, we observe that the result from this study and the initial experimental provide a 

practical solution to embed the complete algorithm into the Arduino Mega and APM. Not only, it 

provides a simple solution; it is also affordable to be implemented especially for the beginner with 

minimal efforts. Hence, for the scope of this paper, we consider the objective of this study is achieved. 
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