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Abstract. Global concern on petroleum based plastics which is non-degradable in our 

environment has led researchers to develop biodegradable plastics. However, biodegradable 

plastics have poor barrier properties because of their hydrophilic character of biopolymers. It is 

known that incorporation of nanocellulose extracted from plant sources to improve barrier 

properties of biocomposites because of its nanoscopic structure.   This study aims to develop 

biodegradable film based from PVA/Starch and nanocellulose from sugarcane bagasse. 

Investigation on the effect of sugarcane bagasse nanofibre (SCB-NF) content, PVA content, 

starch content and water content to the water absorption property of polyvinyl alcohol 

(PVA)/Starch (S) composites reinforced with sugarcane bagasse nanofibre (SCB-NF) was 

carried out using Design Expert Version 9.0 with a two-level factorial design (2-FI). 

Composition of SCB-NF, PVA, Starch and water content was varied from the range of 1 to 

9%, 3-8 gram, 1-4 gram, and 80 to 100mL. The nanofibre content was found to have 

significant effect (p=0.0099) on the water absorption of biocomposite film, which is in parallel 

to the theory of nanofillers to decrease water absorption of biocomposite. As expected, the 

individual and interaction effects of the compositions can have effect on the water absorption 

of the biocomposite because of the chemical bonds interaction that they form during the 

synthesis of biocomposite film. 

1. Introduction 
Presently, food packaging industry predominantly use petroleum based plastic materials.  The most 

commonly used petroleum based plastics in food packaging includes low density polyethylene 

(LDPE), polystyrene (PS), and polyethylene terephthalate (PET). However, the problem with 

petroleum based plastics in food packaging is their non-degradable nature, and the limited resources 

[1].One of the attempts to overcome the problem of petroleum based plastic waste is by developing a 

biodegradable polymer. Polyvinyl alcohol (PVA) is one of the promising polymers since it is the only 

vinyl type polymer with biodegradable characteristics. However, the application of PVA materials is 

limited due to the high cost and slow degradation process especially under anaerobic condition [2]. 

Considering this limitation, PVA is often blended with other cheap biodegradable polymers [3]. 

The best known renewable resources capable of making biodegradable plastics are starch and 

cellulose. Starch is well known abundant raw material and relatively cheap biodegradable polymer. 

Previous studies have reported that blending of PVA and starch can enhance their tensile strength, 

elongation and toughness [4]. Furthermore, the presence of hydroxyl group in both PVA and starch 

makes it form a strong hydrogen bond and relatively good compatibility [5]. The disadvantages of 
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using these PVA/starch blends for packaging is limited due to their poor water barrier  properties, 

hydrophilic nature due to presence of large number of hydroxyl groups. Thus, several studies have 

proposed the incorporation of nanofillers into PVA/starch blends in order to improve water barrier 

property [3]. 

Water barrier property is important in developing film for food packaging. Nanocellulose has 

been used as nanodimension filler in composite material for reinforcing strength, improving 

biocompatibility, controlling water sorption, and barrier properties [6]. Nanocellulose is an emerging 

sector in the food packaging industry as nanoreinforcment for polymers matrix. It is known that nano 

size cellulose is one of the strategies to improve the polymer composite adhesion and compatibility 

[7]. Morphology of the nanocomposites, bearing tortuous mixing nanofillers with a macromolecular 

matrix, leads to higher barrier properties and thus lowering the permeability towards water [8]. In 

addition, it is known that gas or water molecules penetrate in crystalline ordered structure of 

nanocellulose, and their dense percolating network held together by strong inter-particle bonds 

idealize them as good candidate for use as barrier films [9]. This phenomenon was noted by Yoon et 

al. [10], where water resistance of the composites improved by 70% by addition of nanosized poly 

(methyl methacrylate-co-acrylamide) particles. 

The structure of nanocomposites is important in having remarkable barrier properties. Properties 

of nanocomposite film depend on many factors. According to Kumar [11], the choice of the filler is 

important in determining the adhesions between the matrixes and the filler. The strength of bonding 

will be stronger if the filler is functionalized meaning more availability of OH bonds presence on the 

surface to bind to the matrix and the homogenize dispersion of the filler in the matrix. Another 

important factor is the strong adhesion between filler and matrix, which affect the percolation 

thresholds, and lessen empty spaces (voids) between the polymer matrix interfaces. 

By understanding various factors that affect water absorption of nano composite film, the best 

approach for the optimization of various factors is a 2 level factorial design by Design Expert 

software. Two- level factorial is designed to study the effects of factors and their interactions 

simultaneously at two levels over a range of chosen factor levels. The range of loadings chosen was 

estimated based from previous researchers. Lani, 2014 concluded that with a 7: 3 ratio of PVA and 

starch is the best combination for optimum properties. Besides, Lani also found that nanocellulose 

from EFB fibre loading of 5% showed the best water resistance properties of the nanocomposite film. 

Further studies by Naguib et al. [12], showed that with 5% nanocellulose reinforcement from bagasse 

fiber, the composite showed the least water absorption.   

In developing a new material which is biodegradable and have potential in food packaging this 

study aims to investigate the effect of factors that determine the water absorption property of the 

PVA/starch/nanocellulose biocomposite. It is hypothesized that amount of constituents of polymer 

matrix composites and their interaction may have effect on the final property of water absorption of 

biocomposite film. Using 2 level factorial design (2-FI) the factors involved are PVA content, starch 

content, water content (solvent), and nanocellulose loading, and their interaction are optimized that 

give the least water absorption of the biocomposite film. Nanocellulose is chosen as nanoreinforcment 

for the PVA/starch blend matrix. Nanocellulose having the characteristics of three hydroxyl groups 

laterally along surface of cellulose chain, and the high surface area makes it an ideal candidate to 

functionalize with the polymer matrix of PVA/starch matrix. Furthermore, the advancement of 

nanocellulose fibre derived from sugarcane bagasse is not widely exploited yet [13]. 

2. Experimental 

2.1. Materials 
Sugarcane bagasse originated from green canes (Saccharum officinarum, Gramineae family) was 

collected from night market, Taman Melati, Kuala Lumpur, Malaysia. All chemical reagents were of 

analytical reagent grade. Polyvinyl alcohol (MW 89,000) with degree of hydroxylation 98 % was 

purchased from Sigma Aldrich (Malaysia).  Pure potato starch was obtained from Systerm (Malaysia). 

Sodium hydroxide and hydrogen peroxide were purchased from Friendemann Schmidt. Sulphuric acid 

was purchased from Laboratory reagent. 
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2.2. Extraction of nanocellulose from sugarcane bagasse 

2.2.1 Alkali treatment. Sugarcane bagasse undergoes alkali treatment to remove the lignin and 

hemicellulose structure from the sugarcane bagasse fibres. The sugarcane bagasse was treated with an 

alkali solution (2%w/v NaOH) placed in water bath at 80 °C. The solid residue was then filtered and 

washed several times using deionized water under vacuum pump.  

2.2.2. Bleaching. Following pulp disintegration process, the bleaching process comes with aqueous 

hydrogen peroxide solution in the ratio of 1:1 at 75 °C. The mixture was also washed and filtered 

several times to ensure proper washing.  

2.2.3. Hydrolysis. Bleached fibres were hydrolysed with a 1% v/v H2SO4
 solution at 80 °C. 

2.2.4. Ultra sonication. Hydrolyzed sugarcane bagasse fibres were then sonicated to break down the 

individualized fibres by using microcentrifuge tubes filled with ice packed in a beaker. Hydrolyzed 

fibres was filled with distilled water, vortexed, and ultrasonicated with 80 Hertz. Following 

ultrasonication, the microtube was centrifuged for 20 minutes at 10,000 rpm, and kept in refrigerator at 

4 °C. 
 

2.3 Preparation of PVA/Starch/Nanocellulose biocomposites using Two factor Factorial design  
Preparing the biocomposite film was done after extracting the nanocellulose from previous 

experiment. In order to determine the significance of the parameters, experiments were designed in 

determining the best parameters and amount needed for the preparation of PVA/Starch/nanocellulose.  

A two factor factorial design from statistical software Design Expert version 9 (Stat-Ease, 

Minneapolis, USA) was used to optimize the conditions for the preparation of the composites. The 

ranges and levels of the factors investigated in this study are shown in Table 1. Process condition was 

carried out for 4 hours at 130 °C with rotor speed at 450 rpm, and the water absorption test was 

measured using ASTM D570.  Samples of 20 mmx 20 mm in dimensions were immersed in 10mL of 

distilled water in room temperature for 24 hours. Before immersion, samples were dried in an oven for 

50 °C for 24 hour and initially weighed. According to standard test method for water absorption of 

plastics ASTM D570, following immersion for 24 hour, water accumulated on the sample surface was 

gently wiped and samples were reweighed for the nearest 0.001. Water absorption was calculated 

using the following equation. 

 

 Percentage water absorption, % =  
����� ���	
�-������� ���	
�  

����� ���	
�
 × 100                                         (1)  

               

Four independent variables were employed by factor factorial design (FFD). The variables used were 

nanocellulose loading (A), PVA( B), starch( C) , and water (D). The design consists of 19 runs 

including 3 center points. The response measured is the water absorption.  

 

Table 1: Values and coded levels of each variable in 2 factor factorial design. 

 

Variables 

Coded levels 

Low level  

(-1) 

High level  

(+1) 

A Nanocellulose loading 

(%) 

1 9 

B PVA (g) 3 8 

C Starch (g) 1 4 

D Water (mL) 80 100 
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3. Results and discussion 
The nanofibre dimension from sugarcane bagasse was confirmed by FESEM analysis (JEOL JSM 

5600). Figure 1 illustrates the even surface morphology of sugarcane bagasse fibres at 100k 

mmagnification. From the figure, fibres are clearly seen in individualized forms covering the area. The 

fibres is between 20 -50 nm in diameter and several micrometer in length.  

 

 

Figure 1: FESEM analysis of nanocellulose from sugarcane 

bagasse. 

 
Optimization test was done after isolating nanocellulose from sugarcane bagasse. The influence of 

PVA, starch, solvent i.e. water and nanocellulose loading for the water absorption of the resulting 

biocomposite film was investigated by 2 level factorial design. An ANOVA analysis (Table 2) is 

performed to determine the effect of the factors and the interactions. The most significant range of 

amount for PVA, starch, water, and nanocellulose content were optimized to obtain the optimum 

mixture for the production of PVA/Starch/Nanocellulose film. Nineteen experiments were conducted 

as designed by 2 level factorial design while the water absorbing behavior were evaluated and acted as 

the response to the design. The relationship between the experimental results and independent 

variables was expressed as second order polynomial regression model which relates the water 

absorption (response) with all the variables (nanocellulose content, PVA content, starch content, and 

water content was calculated using design expert and represented as Eq. (2). 

 

�
��� 
��������� (�) = ��  + �1� + �2� + �3� + �4� + �12�� + �13�� + �14�� +
�23�� + �24�� +  �1234���� +∈                                                                                                            (2) 

 

Table 2: The experimental results of the parameters used in 2 factor factorial design.  

Trials Independent variables Response 

Nanocellulose 

(g) 

PVA (g) Starch (g) Water (mL) Water 

absorption (%) 

1 1 8 4 80 73.3 

2 1 3 1 80 64.7 

3 9 3 1 100 81.25 

4 9 8 1 80 93.1 

5 5 5.5 2.5 90 81.57 

6 1 3 4 100 86.4 

7 1 8 1 100 78.8 
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Table 2 tabulates the experimental values of responses in accordance to experimental design, out of 19 

experiments, run 17 achieved the highest water absorption while run 2 had the lowest water 

absorption. There are many factors that can affect the final properties of the nanocomposite. One of 

the key parameters in achieving an improved performance of nanocomposites film is by having an 

evenly distributed dispersion of the materials. Processing PVA/Starch nanocomposites filled with 

nanocellulose is like mixing the materials with different scale dimension, which depends on many 

different interacting factors including the strong adhesion/bonding strength of the nanofiller with the 

matrix, type of material used, and geometry and orientation of the fibres [11]. 

Barrier properties of nanocomposites are sensitive to the microstructure and the interface 

between the matrix and filler. The interactions between the organic and inorganic phase at the 

interface determine the final behavior of the barrier performance of the composites [14]. The presence 

of void or free volumes in nanocomposite film increases the diffusion of water through these empty 

areas. Unlike oxygen molecules, water not only interacts with themselves, but also with the polymer 

matrices where they can form hydrogen bonds. The ability to form strong rigid structure is important 

in resisting water molecules to diffuse in the film.  

By nature, PVA, starch, and nanocellulose are polar molecules that are hydrophilic, meaning 

water absorbing material. However, with the concept of nano scale dimension of fibres that has high 

surface area to volume ratio makes the nanocomposite film to have complex strong rigid network. This 

strong network may be attributed to the chemical interaction that involves PVA/starch/nanocellulose 

in that strong hydrogen bonding might occur among the nanocellulose structure of three hydroxyl 

groups on the surface with the structure of the starch and PVA in presence of water. The aspect ratio in 

terms of length to width ratio of the nanocellulose also plays a role in determining how strong is the 

forces between the chemical structures.  

 

Table 3: Analysis of variance (ANOVA) for quadratic model of water absorption of PVA/S/SBNF. 

8 1 8 1 100 77.4 

9 9 3 4 80 83.3 

10 1 3 1 80 73.6 

11 9 8 4 100 75 

12 9 8 4 100 74.2 

13 1 8 4 80 78.43 

14 9 3 1 100 88.23 

15 5 5.5 2.5 90 88.04 

16 1 3 4 100 82 

17 9 8 1 80 91.37 

18 5 5.5 2.5 90 79.24 

19 9 3 4 80 76 

Source Sum of squares DF Mean 

squares 

F-value p value 

Model 713.66 6 118.94 7.78 0.0014* 

A  142.92 1 142.92 9.35 0.0099* 

B  2.34 1 2.34 0.15 0.7024 

C  24.55 1 24.55 1.61 0.2291 

D  5.62 1 5.62 0.37 0.5557 

AC  315.77 1 315.77 20.66 0.0007* 

AD  222.46 1 222.46 14.55 0.0025* 

Residual 183.45 12 15.29   

Lack of fit 25.63 2 12.81 0.81 0.4713 

Pure error 157.82 10 15.78   

Cor total 897.11 18 
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Table 3 summarizes the statistical results obtained after analyzing by Design Expert software. 

Analysis of variance (ANOVA) was performed to find the effect and interactions of each variable. 

Both F-value and p-value were used to confirm the significance of each variable. The greater F- value 

indicates the estimated variation data is real and p values less than 0.05 suggested that the variable is 

significant. Based from Table 3 above, it can be seen that the model had a significant effect on the 

responses. The model F-value 7.78 and p-value 0.0014 implies the model is significant.  The variables 

A, B, C and D are the independent variables nanocellulose, PVA, starch, and water content, 

respectively. AC and AD represents the interaction effects. As it is observed, the lowest p-values are 

obtained by nanocellulose loading interaction with amount of water (AD), followed by nanocellulose 

loading (A), and nanocellulose loading interaction with amount of starch (AC). Insignificant lack of 

fit, with p-value of 0.4713 is desirable and implies that the test is insignificant relative to pure error. 

High values of R2 on the model of nanocomposite film (0.7955) clarifying the relation involving the 

response with the independent variables is highly correlated and that the model is highly significant.  

Pareto chart in Figure 2 was used to distinguish between the factors that determine the 

importance of an effect and the greatest effects, considering the line on the chart at t-value of effect. 

There are two different t- value of effects which are Bonferroni limit line (t-value of effect= 3.294) 

and t-value limit line (t-value of effect= 2.200). Coefficients with t-value of effect above Bonferroni 

line are designated as certainly significant coefficients, and coefficients with t-value of the effect 

between Bonferroni line and t-limit are termed as likely to be significant, and coefficients below the t 

limit line is statistically insignificant.   As depicted from the graph, factor A (nanocellulose loading) 

shows to have the highest effect on the water absorption, followed by D (amount of water), and B 

(amount of PVA). This shows that increasing number of nanocellulose will decrease the water 

absorption of the nanocomposites. The negative effects of the factors are the interaction AC 

(interaction of nanocellulose loading and starch), AD (interaction of nanocellulose loading and water), 

and C (starch). 

 
Figure 2: Pareto chart of four factors and their interaction effects on water absorption properties of 

PVA/starch/nanocellulose film; orange-coloured bar indicates positive effects of factors; the blue-

coloured bar indicates negative effects of factors. 
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The reason for the negative effects of the interactions between nanocellulose with water and 

starch could be attributed by the chemical structure of each constituents and nanocellulose fibre 

morphology. Nanocellulose fibres morphology plays an important role in the mechanism of water 

absorption of film. The nanofibrils that form complex dense structure and smaller pores in nanometer 

range, increases the tortuosity within the film and thus decreases the permeability within the film [15]. 

Tortuosity is intended to describe the effort of a permeate e.g. oxygen or water in transmitting through 

the blocking material [16]. Nair et al., [17] reported that nanocellulose has a strong reducing effect on 

the water vapour diffusion due to its nanoscale dimension and rigid framework compared to cellulose 

fibres. Chemical structure of starch also plays a role in water absorption of the composite; this is 

supported by Zou et al., [18] reported with an increased content of starch, water absorption of 

PVA/starch composites increased. This may be attributed to the structure of starch with higher 

presence of OH group thereby increasing the site for water to bind to the OH groups.  

Nanocellulose fibres bearing three hydroxyl groups present on the surface which makes it an 

interesting property. The relation between nanocellulose fibres and water absorption of the 

biocomposites has been reported by other researchers as well. The structures of the fibres play a role in 

diffusivity of the water to pass through. Kiani et al., [19] studied PVC reinforced with pulp fibres and 

concluded that water absorption increases with increasing fibre content due to the porous tubular 

structure, accelerating the diffusion of water into the polymer membrane. This shows porous structure 

of the fibres might accelerate the water permeability to the material. In contrast to a study by Abdul 

Khalil et al., [20] that incorporation of two fibre; woven jute fibre and EFB fibre in an epoxy 

composite film decreased the water absorption of the hybrid composites. This may be due to the 

packaging and arrangement of these fibres that filled up the voids during the formation of the 

composite film. As compared with only EFB fibres/epoxy composite the water absorption increases, 

due to presence of higher EFB fibres voids (8.6%) as compared to jute fibre (2.6%). Thus another 

factor that affects water absorption might be due to the void content in the polymer matrix. The greater 

voids presence, more water is absorbed into the composite film. Pothan [21] explained the water 

absorption of the fibres mechanism may be due to formation of micro-channels, providing a way for 

water to pass through the pores on the surface of the fibres. This shows those fibres with structure that 

gave higher amount of voids leads to higher amount of water absorption.  

Physical structure of nanocellulose in terms of crystallinity also affects the water diffusion into 

the film. This statement is supported by Dufresne [22] where he reported that water transmission is 

affected by the degree of crystallinity, as crystalline phases block more transmission than amorphous 

phases. Sjöholm [23] also supported this statement, that the greater the degree of crystallinity the 

higher the barrier properties. The concept of having a rigid network that pack perfectly is like 

modelling the polymer chains forming a concise structure that impermeates the penetrating molecules 

[24]. Other factors such as lumen size, and adhesion of matrix fibre also effect water absorption 

behavior of nanocomposites [25]. Svagan et al. [26] studied the influence of nanocellulose on water 

sorption of starch/nanocellulose polymer. Nanocellulose was found to have strong effect on the 

diffusivity of water attributed by characteristics and geometry of cellulose, rigid fibre netwroks, and 

strong interactions between nanocellulose and starch matrix.  

The goal of biocomposite film was to improve water resistance of the film, therefore the target 

values of response of water absorption percentage was the lowest values obtained from the 

experimental results. The acceptable values of desirability function were the values close to 100%. In 

this study, the water absorption property of the biocomposite with 1 % nanocellulose, 3 g PVA, 1 g 

starch, and 80  mL water had 83 % desirability. These levels of independent variables yield the lowest 

responses of water absorption with 69.41 %. 
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Table 4: Results for target values of the response that yields the lowest value of water absorption of 

nanocomposites film.  

Constituents 

amount 

Nanocellulose 

(%) 

PVA (g) Starch (g) Water (mL) Water 

absorption (%) 

Desirability 

(%) 

1% 3 1 80 69.41 83 

 

 
Figure 3: Photograph of optimized PVA/starch/nanocellulose nanocomposites placed on a 

background paper for demonstrating transparency.  

 

Validation experiments were carried out to verify the accuracy of the model. Three set of experiments 

were carried out by using the optimal values of the factors. The experimental result showed water 

absorption of 69.9; while DOE software predicted the response to be at 69.41 %. It was found that 

experimental result differed with only 0.7 % error more than the predicted response. This reflects the 

accuracy 99.3% between the experimental and predicted results. This shows that 2 level factorial 

design model is accurate in predicting the water absorption of biocomposite film.  

 

Table 5: Results of the validation experiments for water absorption of PVA/starch/nanocellulose film. 

Validation Nanocellulose 

(%) 

PVA (g) Starch (g) Water 

(mL) 

Water absorption 

                  

% Error 

Predicted Actual 

1 3 1 80 69.41 69.90 0.7 

4. Conclusion 
This study showed that statistical design can be used in evaluating the water absorption properties of 

the PVA/Starch/Nanocellulose thin film composites. Nanocellulose loading was identified by 2 level 

factorial designs as an important parameter for improving water absorption of nanocomposite film. 

Nanocellulose loading showed positive effect, whereas amount of starch, water, and PVA had a 

negative main effect. This suggests that the optimized content of PVA of 3g, content of starch 1g, 

content of water 80mL, and nanocellulose loading of 1% could be used for further characterization. 

This optimized condition shows strong adhesion and interfacial bonding between polar molecules of 

PVA starch blend and nanocellulose could be achieved resulting in minimum water absorption 

(64.1%). Optimization of these variables resulted in reduced cost, time, and material. Further studies 

could be focused on modeling the mechanism of water absorption studies of nanocomposites film.  

 

Acknowledgement 
The authors would like to thank Ministry of Higher Education (MOHE) and International Islamic 

University Malaysia (IIUM) for the research Grant FRGS16-044-0543. 

5. References 
[1] Othman S H 2014 Bio-nanocomposite materials for food packaging applications: types of 

biopolymer and nano-sized filler Agric Agric Sci Proc 2 296-303 



9

1234567890‘’“”

The Wood and Biofiber International Conference (WOBIC 2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 368 (2018) 012005 doi:10.1088/1757-899X/368/1/012005

 
 
 
 
 
 

[2] Takasu A, Itou H, Takada M, Inai Y, and Hirabayashi T 2002 Accelerated biodegradation of poly 

(vinyl alcohol) by a glycosidation of the hydroxyl groups Polymer 43 227-231 

[3] Lani N S, Ngadi N, Johari A, and Jusoh M 2014 Isolation, characterization, and application of 

nanocellulose from oil palm empty fruit bunch fiber as nanocomposites J Nanomater 2014 13 
[4] Guo R, Hu C, Pan F, Wu H, and Jiang Z 2006 PVA–GPTMS/TEOS hybrid pervaporation 

membrane for dehydration of ethylene glycol aqueous solution J Membrane Sci 281 454-462 

[5] Tang X and Alavi S 2011 Recent advances in starch, polyvinyl alcohol based polymer blends, 

nanocomposites and their biodegradability Carbohydrate Polym 85 7-16 
[6] Fu S, Tian C, and Lucia L A 2017 Water Sorption and Barrier Properties of Cellulose 

Nanocomposites Handbook of Nanocellulose and Cellulose Nanocomposites 649-681 
[7] Ng H M, Sin L T, Bee S T, Tee T T, and Rahmat A R 2017 Review of Nanocellulose Polymer 

Composite Characteristics and Challenges Polym-Plast Technol 56 687-731 

[8] Feldman D 2015 Cellulose nanocomposites J Macromol Sci A 52 322-329. 
[9] Zafeiropoulos NE (Ed.) 2011 Interface engineering of natural fibre composites for maximum 

performance Elsevier 
[10] Yoon S D, Park M H, and Byun H S 2012 Mechanical and water barrier properties of 

starch/PVA composite films by adding nano-sized poly (methyl methacrylate-co-acrylamide) 

particles. Carbohydrate Polym 87 676-686 
[11] Kumar, R. (2014) Polymer-matrix composites : types, applications, and performance Nova 

Science  
[12] Naguib H M, Kandil U F, Hashem A I, and Boghdadi Y M 2015 Effect of fiber loading on the 

mechanical and physical properties of “green” bagasse–polyester composite J Radiat Res Appl 
Sci. 8 544-548 

[13] Kumar A, Negi Y S, Choudhary V, and Bhardwaj N K 2014 Characterization of cellulose 

nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste Journal of 
Materials Physics and Chemistry 2 1-8 

[14] Mittal V (Ed.) 2009 Optimization of polymer nanocomposite properties John Wiley & Sons 

[15] Syverud K and Stenius P 2009 Strength and barrier properties of MFC films Cellulose 16 75 
[16] Matikainen L 2017 Nanocellulose as barrier coating deposited using a laboratory rod coater 

[17] Nair S S, Zhu J Y, Deng Y, and Ragauskas A J 2014 High performance green barriers based on 

nanocellulose Sustainable Chemical Processes 2 23 
[18] Zou G X, Jin P Q, and Xin L Z 2008 Extruded starch/PVA composites: water resistance, thermal 

properties, and morphology J. Elastomers Plast 40 303-316 

[19] Kiani H, Ashori A, and Mozaffari S A 2011 Water resistance and thermal stability of hybrid 

lignocellulosic filler–PVC composites Polym Bull 66 797-802 
[20] Khalil H A, Jawaid M, and Bakar A A 2011 Woven hybrid composites: water absorption and 

thickness swelling behaviours BioResources 6 1043-1052 
[21] Pothan L A, Cherian B M, Anandakutty B, and Thomas S 2007 Effect of layering pattern on the 

water absorption behavior of banana glass hybrid composites J Appl Polym Sci 105 2540-2548 

[22] Dufresne A 2017 Nanocellulose: from nature to high performance tailored materials Walter de 

Gruyter GmbH & Co KG 

[23] Sjöholm K 2010 Use of bio-based materials in fibre-based packaging. Master’s thesis. Aalto 

University, School of Chemical Technology. Espoo 99 

[24] Auvinen S and Lahtinen K 2008. Chapter 9: “Converted paper and paperboard as packaging   

materials”, in Book 12: Paper and Paperboard Converting, 2nd Edition, J. Kuusipalo (ed.). 

Finnish Paper Engineers’ Association 286- 332 

[25] Mariatti M, Jannah M, Abu Bakar A, and Khalil H A 2008 Properties of banana and pandanus 

woven fabric reinforced unsaturated polyester composites J Compos Mater 42 931-941. 
[26] Svagan A J, Hedenqvist M S, and Berglund L 2009 Reduced water vapour sorption in cellulose 

nanocomposites with starch matrix Compos Sci Technol 69 500-506 
 


