
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

The Wood and Biofiber International Conference (WOBIC 2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 368 (2018) 012034 doi:10.1088/1757-899X/368/1/012034

One-pot nanofibrillation of cellulose and nanocomposite 
production in a twin-screw extruder 

M N F Norrrahim1, H Ariffin1,2*, T A T Yasim-Anuar2, M A Hassan1, H Nishida3*, 
T Tsukegi4  
1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular 

Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. 
2Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest 

Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, 

Malaysia.   
3Department of Biological Functions and Engineering, Graduate School of Life Science 

and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-

ku, Kitakyushu, Fukuoka, 808-0196, Japan. 
4Innovative Composite Materials Research and Development Center (ICC), Kanazawa 

Institute of Technology, Hakusan, Ishikawa 924-0838, Japan. 

 

*Corresponding authors: hidayah@upm.edu.my (H Ariffin), 

nishida@lsse.kyutech.ac.jp (H Nishida) 

 
Abstract. Oil palm mesocarp fiber (OPMF) is rich in cellulose and suitable to be used as raw 

material for the production of cellulose nanofiber (CNF) and biocomposite. Recently, there have 

been reports on the use of CNF as filler in polypropylene (PP) for improving the mechanical 

properties of PP, however the process requires two steps: (i) nanofibrillation for CNF production 

and (ii) biocomposite compounding. In this study, a one-pot process was developed whereby 

nanofibrillation of cellulose and subsequently melt-blending of the CNF with PP were conducted 

at once, in a twin-screw extruder. Morphological analysis of the biocomposites by SEM showed 

that the cellulose was successfully fibrillated into CNF and compounded homogeneously with 

PP. The highest tensile strength, Young’s modulus, flexural strength, and flexural modulus 

recorded were 34.9 ± 0.5 MPa, 12.1 ± 0.1 GPa, 59.3 ± 1.3 MPa, and 2.3 ± 0.05 GPa, respectively 

when 3 % CNF was used in the biocomposite. The reinforcement of CNF-OPMF in PP improved 

the mechanical properties of the biocomposite by 33.4 % compared to neat PP. It is interesting 

to note that the addition of CNF managed to improve the crystallinity of the biocomposite (54.6 

%) compared to neat PP (50.1 %), despite of the lower crystallinity of CNF compared to PP. 

This observation can be attributed to the high density of covalent bonds per cross-sectional area 

and the large number of hydrogen bonding sites. Additionally, the observation can be explained 

by the role of CNF in composite which acted as nucleation agent, which eventually increased the 

crystallinity of the biocomposite.  

1.  Introduction 
Cellulose nanofiber (CNF) from renewable biomass has attracted much interest as an alternative to 

micro-sized reinforcement materials in composite plastics. There have been significant advances in the 

development of plant-plastic composites [1]. Owing to its high stiffness, it can be used to increase the 

mechanical strength of general-purpose thermoplastics such as polypropylene (PP), polyethylene (PE), 
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polyvinyl chloride, polylactic acid and nylon. PP is the most important and widely used polyolefin [2]. 

Its low density, low production cost, design flexibility, and recyclability make it a popular choice as a 

matrix for composite making. PP is hydrophobic, leading to compatibility issues when fillers with polar 

surfaces such as cellulose, are used.  

A challenge when using CNF in biocomposites is due to its non-uniform dispersion. This is 

contributed by their polar surfaces which is difficult to disperse uniformly in a non-polar medium. This 

might be the reason why the processing of CNF biocomposites was first limited to solvent casting, where 

water soluble or dispersive polymers were the most common matrices [3]. However, the development 

of other, more flexible and industrially viable processing techniques is necessary to promote 

commercialization of these materials. Therefore, several interesting processing methods have been 

recently reported for these materials. One of the developed processing methods is melt compounding 

[4]. Melt compounding of cellulose nanocomposites presents several challenges [3]. The major 

difficulties in melt compounding are to feed the CNF into the extruder and achieve uniform dispersion 

in the polymer matrix. The CNF has high surface area and has tendency to aggregate when dried. This 

is expected to be avoided by firstly mixing them in a suitable medium, which is then fed into the extruder. 

Another method to provide uniform dispersion of nanocellulose in polymer matrix is by using solvent 

casting, nevertheless the process is not industrially applicable. 

Reinforcement of CNF in PP by extrusion was discovered by Hassan et al. (2014) [5].  However, the 

fibrillation of cellulose into CNF was conducted separately from the extrusion. Based on results 

obtained, the mechanical properties of PP/CNF composites were improved as compared to neat PP. 

Furthermore, the reinforcing effects of CNF was better in the injection molded composites as compared 

to compression molded composites.  

One-pot nanofibrillation of cellulose and compounding process for biocomposite production could 

be done by extrusion. The advantage of this kind of processing lies on its efficient production of CNF 

biocomposites due to fewer processing steps involved. The ability to blend CNF with PP by melt 

compounding using an extruder would be advantageous for large scale biocomposites production since 

extrusion will allow for high solid content processing and provide a continuous process. In this study, 

nanofibrillation of cellulose for the production of CNF and subsequently melt compounding of the CNF 

with PP was taken place in the same vessel, i.e. a twin-screw extruder. The biocomposites produced 

were characterized for their mechanical, morphological, crystallinity and thermal properties. 

2.  Materials and methods 
 

2.1 Materials 
OPMF was collected from Seri Ulu Langat Palm Oil Mill, Dengkil, Selangor. The fibers were first 

disintegrated, washed and dried. Sodium chlorite (NaClO2) and potassium hydroxide (KOH) were 

obtained from ACROS ORGANICS and J.T Baker Neutracit, respectively. 

 
2.2 Fiber treatment 
In order to disintegrate the OPMF fibers physically, they were washed, cleaned, sorted and sun dried. 

Thereafter, pretreatment of fibers was conducted to recover the cellulose by removing hemicellulose 

and lignin in a method as explained below.  

Lignin removal: Delignification was conducted by treating the OPMF with 5 wt% of sodium chlorite 

(NaClO2) aqueous solution. pH of the solution was adjusted to pH 5 and the fibers were soaked in this 

solution at 70 oC for 1.5 hour. Then the fibers were washed and filtered with deionized water until the 

pH became neutral [6]. Following that, fibers were oven dried overnight.  

Hemicellulose removal: KOH pretreatment was conducted by chemically treating the fibers with 

KOH to completely remove hemicellulose. Initially, fibers were dissolved in 6 wt % of KOH for 24 

hours with constant stirring rate [6]. Sample was then filtered and rinsed with deionized water until to 

reach the pH=7.  

Chemical composition of untreated and treated OPMF was shown in Table 1. More than 99% of 

cellulose was isolated from treated OPMF. 
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Table 1. Chemical composition of untreated and cellulose-OPMF 

*Data provided is mean of triplicate samples 

  
2.3 One-pot nanofibrillation and nanocomposite production in a twin-screw extruder 
Fibrillation and melt compounding were carried out using a twin-screw extruder (Imoto machinery Co. 

Limited: Model IMO-160B). The extruder consisted of two major parts: fibrillation and mixing. 

Fibrillation of cellulose was conducted with a specially designed screw element: tooth-mixing elements 

(TME) for nanofibrillation at 120 oC, with screw speed of 100 rpm for 1 hour [7]. After nanofibrillation 

was completed, the rotational speed was reduced to 25 rpm. This is to allow the movement of the 

fibrillated cellulose into mixing part. PP was fed through a hopper in between fibrillation and mixing 

section with the ratio of PP to cellulose of 97:3, 98:4 and 95:5. For melt compounding, temperature used 

was 180 oC and screw speed was set at 25 rpm for 30 minutes. PP/CNF-OPMF composites were then 

pressed at the same temperature in an electrically heated platen press for 5 min under a pressure of 10 

atm to form composite sheets.  

 

2.4 Analysis 
 
2.4.1 Visual examination. The visual appearance analysis of composites was conducted by using 

digital camera. Composites film were placed on the black fabric in order to avoid reflections. Therefore, 

a clear dispersion of CNF in composites can be observed. Pictures were taken in order to investigate the 

distribution of CNF in PP matrix.  
 
2.4.2 Morphological analysis. The morphology of the CNF and the fracture surfaces of the 

composite samples were observed using SEM (FE-SEM S-3400N, Hitachi, Japan). Composites fracture 

surfaces were obtained through flexural tests. The dried CNF and fracture surfaces were coated with Pt-

Pd for 100 s (Ion sputter: Hitachi, Japan) before the observations.  

 
2.4.3 Mechanical properties. Tensile and flexural tests were performed to determine the mechanical 

properties of the composites using a mechanical tester (AGS-5kNG, Autograph, Shimadzu Co, Kyoto, 

Japan). Three-point flexural tests were performed on the bar-shaped composites samples at a crosshead 

speed of 5 mm/min; the span length for the tests was 50 mm. Flexural tensile (MPa) and flexural modulus 

(MPa) were obtained in this test. The dumbbell-like composites samples were subjected to tensile tests. 

The tensile tests were performed at a crosshead speed of 10 mm/min. Results of tensile strength (MPa), 

young’s modulus (MPa), and elongation at break (%) were recorded. 

 
2.4.4 Crystallinity analysis. X-ray diffraction (XRD) pattern was recorded using X-ray powder 

diffractometer (Rigaku Corporation, Tokyo, Japan) equipped with nickel filtered CuKα radiation (k= 

0.1542 nm) at 40 kV and 25 mA. The diffractograms were detected in the range 2θ = 2 - 50o at a scan 

rate of 2o/min.  

 
2.4.5 Differential scanning calorimetry analysis. Differential scanning calorimetry (DSC): 

measurements were performed using a Pyris 1 DSC calorimeter (Perkin–Elmer Co., Waltham, MA, 

USA). The samples were first heated from 30 to 200 °C at a rate of 10 °C/min and held at 200 °C for 1 

min. They were then cooled to 50 °C at a rate of 10 °C/min and held at 50 °C for 1 min. Next, they were 

again heated to 200 °C at a rate of 10 °C/min and held at 200 °C for 1 min. Finally, they were quenched 

to 135 °C at a rate of 50 °C/min to determine their τ1/2 values. The temperatures corresponding to the 

exothermic and endothermic peaks in the first heating step and the cooling step were called Tm and Tc, 

 
Chemical composition * (%) 

Oil palm mesocarp fiber Cellulose Hemicellulose Lignin 

Untreated 38.38 ± 1.21 36.74 ± 1.59 24.88 ± 0.59 

Cellulose-OPMF 99.46 ± 0.21 0.00 ± 0.00 0.54 ± 0.69 
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respectively. ΔHm values were determined from the areas of the melting and crystallization peaks, 

respectively. The ΔHm values was converted on the basis of the PP weight ratio of the composites. 

 
2.4.6 Thermal stability. Thermal stability analysis was determined by using Thermo Gravimetry 

Analyser (TGA) (TGA – 9, Perkin Elmer, USA) under nitrogen flow. Sample (5-11 mg) was placed on 

a ceramic pan and set on the TGA. The sample was heated at heating rate of 10 oC min-1 within the 

temperature range of 50–550 oC. 

3.  Results and Discussion 
 
3.1 Degree of fibrillation by extrusion 
The effectiveness of nanofibrillation of cellulose-OPMF into CNF-OPMF by extrusion was evaluated 

and depicted in Figure 1. The SEM micrograph shows that the fibrillation did not occur when less than 

3 % of fiber used. Small amount of fiber used gives a low force in the fibrillation part of extrusion which 

reduced the degree of fibrillation. In spite of this, only small amount of fiber was managed to move into 

nanocomposite part after fibrillation process completed when less than 3 % of fiber used. The fibrillated 

fiber was moved into the composite production part after the RPM of the extrusion screws was slow 

down to 25 RPM. However, as the amount of fiber increased, the fibrillation was increased.  Fibrillation 

was occurred very well at 3% of cellulose as shown in Figure 1 (c). At higher magnification, the size of 

CNF was identified as <50 nm (Figure 1 (d)). Therefore, in this study, composites were produced from 

3 % to 5 % of CNF to PP.  

 
(a) 

 

 
(b) 

 
(c) 

 

 

(d) 

Figure 1. Morphology of fibrillated cellulose-OPMF by extrusion, (a) cellulose-OPMF (1%), (b) 

cellulose-OPMF (2%), (c) cellulose-OPMF (3%), (d) cellulose-OPMF (3%) (50,000 magnification). 

 
3.2 Visual appearance  
Visual appearance of the composites samples was observed to determine dispersion characteristic of 

CNF-OPMF in the PP matrix. It was seen that CNF in PP/CNF-OPMF (3%), PP/CNF-OPMF (4%), and 

PP/CNF-OPMF (5%) was well dispersed as shown in Figures 2 (a), (b) and (c).  However, aggregation 

of CNF was observed in some parts of PP/CNF-OPMF (5%) composite (Figure 2 (c)). The aggregated 

CNF in PP matrix could be correlated to the decrement of the mechanical properties when CNF amount 
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was increased. In order to support this finding, morphological analysis of composites by SEM was also 

evaluated. 

 
(a) 

 

 
(b) 

 
(c) 

  

Figure 2. Visual appearance of composites, (a) PP/CNF-OPMF (3%), (b) PP/CNF-OPMF (4%), (c) 

PP/CNF-OPMF (5%) 

 
3.3 Morphological analysis 
In correlation to the visual appearance analysis, morphology of the fractured sample of composites were 

analysed and depicted in Figure 3. For nanocomposite, it is difficult to identify the dispersion of CNF 

in the matrix. This is because the CNF was used in small amount and it was fully embedded within the 

PP matrix. Therefore, element detector system was also used to analyse the oxygen element based on 

chemical structure of celluloses as an indication for the dispersion of CNF in the matrix. Addition of 3 

% CNF-OPMF in PP matrix results a homogeneous dispersion of CNF. There was only small amount 

of aggregations of oxygen element were observed. However, at 4 % and 5 % of CNF in PP matrix as 

shown in Figure 3 (b) and (c), aggregations of oxygen element were increased and clearly observed. 

This is concurrent with the visual appearance, where clear white spots of aggregated CNF were observed 

in the film. As discussed before, these aggregations indicated a limited chemical interaction between PP 

and CNF-OPMF which decrease the compatibility.  

 

(a) (b) 
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(c) 
  

Figure 3. Micrograph of composites, (a) PP/CNF-OPMF (3%), (b) PP/CNF-OPMF (4%), (c) PP/CNF-

OPMF (5%) 

 

3.4 Mechanical properties  
Mechanical properties of PP/CNF-OPMF composites and neat PP are shown in Table 2. The addition 

of CNF-OPMF to PP were markedly increased the tensile and flexural properties as compared to neat 

PP. For an example, tensile strength of PP/CNF-OPMF (3%) is 34.88 ± 0.5 MPa, as compared to neat 

PP 25.99 ± 0.5 MPa. Moreover, flexural strength of PP/CNF-OPMF (3%) was 59.32 ± 1.3 MPa as 

compared to neat PP 46.43 ± 0.8 MPa.  

 

Table 2. Tensile and flexural properties of composites 
 

The Young’s modulus and Flexural modulus of composites were significantly higher as compared to 

neat PP. The Young’s modulus of PP/CNF-OPMF (3 %) was increased to 12121 ± 117 MPa as compared 

to neat PP 4394 ± 53 MPa. Meanwhile, the Flexural modulus of PP/OPMF-CNF (3 %) was 2337 ± 55 

MPa as compared to neat PP 1237 ± 27 MPa. Since CNF is highly crystalline and tougher than neat PP, 

its influenced the increment on tensile and flexural properties of the composites than neat PP. In spite 

of this, these improvements can be attributed to the high density of covalent bonds per cross-sectional 

area and the large number of hydrogen bonding sites between CNF and PP.  

Besides, as the amount of CNF increased in the composites, the mechanical strength was decreased. 

This is related to the dispersion of CNF in PP as discussed before. Aggregation of CNF could lead a 

poor stress transfer in the polymer matrix which resulted the decrement of the mechanical properties of 

PP/CNF-OPMF (4%) and PP/CNF-OPMF (5%).  

 
 

Composites Tensile 
strength 
(MPa) 

Young’s 
Modulus 

(MPa) 

Elongation 
at break (%) 

Flexural 
stress (MPa) 

Flexural 
modulus (MPa) 

Neat PP 25.99 ± 0.5 4394 ± 53 162 ± 13 46.43 ± 0.8 1237 ± 27 

PP/CNF-

OPMF (3 

%) 

34.88 ± 0.5 12121 ± 117 145 ± 8 59.32 ± 1.3 2337 ± 55 

PP/CNF-

OPMF (4 

%) 

31.49 ± 1.1 9386 ± 547 140 ± 7 53.06 ± 1.0 2201 ± 23 

PP/CNF-

OPMF (5 

%) 

29.01 ± 0.8 8315 ± 645 122 ± 5 42.75 ± 0.3 1609 ± 68 
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3.5 Crystallinity properties 
In order to support the mechanical properties analysis, crystallinity analysis was also conducted and 

depicted in Figure 4. High crystalline of CNF helps to improve the crystallinity of composites. This was 

due to the CNF acts as nucleation agent for crystallization occurs (Iwamoto et al., 2014). As the amount 

of CNF increased, the crystallinity of the composites was also increased. The crystallinity of PP/CNF-

OPMF (3 %), PP/CNF-OPMF (4 %), and PP/CNF-OPMF (5 %) were 54.64 %, 56.21 % and 57.00 % 

respectively as compared to neat PP 50.12 % (Table 3). Composites samples had higher crystallinity 

than neat PP which resulted in better mechanical properties as discussed before. Nevertheless, even 

though PP/CNF-OPMF (5 %) had the highest crystallinity, the mechanical properties of the composite 

sample were lower compared to PP/CNF-OPMF (3 %), which may explain that aggregation of CNF and 

eventually low stress transfer mainly affected the mechanical properties. 

 
Figure 4. Crystallinity of composite samples. 

 

Table 3. Crystallinity properties of composites. 

Composition Crystallinity (%) 
Neat PP 50.12 

PP/CNF-OPMF (3 %) 54.64 

PP/CNF-OPMF (4 %) 56.21 

PP/CNF-OPMF (5 %) 57.00 

 

3.6 Thermal properties 
Table 4 lists the thermal properties of PP/CNF-OPMF composites. The Tm values were almost similar in 

all samples, indicating that the CNF blended well with the polymer matrix. However, the Tc and ∆Hm of 

the composites were slightly higher than that of the neat PP, inferring that the crystallinity of the PP 

matrix in the composites was higher than that of the neat PP. This is correlate to the crystallinity analysis, 

where composites have higher crystallinity than neat PP. As the amount of CNF increased, Tc and ∆Hm 
were also increased. This is also indicated that the crystallization of the PP matrix in the composites 

started earlier in a non-isothermal cooling process than the neat PP.  

 

Table 4. Thermal properties of composites. 

Composition Tm (oC) ∆Hm (oC) Tc (oC) 
Neat PP 162.23 99.2 116.59 

PP/CNF-OPMF (3 %) 162.21 105.4 117.89 

PP/CNF-OPMF (4 %) 162.24 106.1 118.32 

PP/CNF-OPMF (5 %) 161.27 107.2 118.55 
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3.7 Thermal stability analysis 
Thermal stability analysis of composites was analysed and depicted in Figure 5. It has been reported 

that cellulose acts as a nucleating agent [8], suggesting the presence of an interaction between cellulose 

and PP sequence. The interaction with solid materials must limit the mobility of polymers even at higher 

temperatures than melting points. Thus, the thermal stability of composites must be influenced by the 

crystallinity of PP in the composites. As the crystallinity of the composites prepared by one-step 

extrusion method was increased as compared to neat PP, the thermal stability based on the Td50% were 

also increased. the Td50% for PP/CNF-OPMF (3 %), PP/CNF-OPMF (4 %) and PP/CNF-OPMF (5 %) 

were 436.9 oC, 444.1 oC, and 449.3 oC respectively, as compared to neat PP 426.8 oC (Table 5). These 

results are correlated to the crystallization of PP enhanced by CNF in the composites as discussed before. 

Looking at different angle, the composites had more amorphous regions, which are easy to degrade 

compared to crystalline regions. Therefore, it also caused the neat PP easier to be decomposed than the 

composites. 

 
Figure 5. Thermal stability of composites. 

 

Table 5. Thermal properties of composites. 

Composition Td50% (oC) 
Neat PP 426.8 

PP/CNF-OPMF (3 %) 436.9 

PP/CNF-OPMF (4 %) 444.1 

PP/CNF-OPMF (5 %) 449.3 

 

4.  Conclusions 
A one-pot nanofibrillation of cellulose-OPMF and PP/CNF-OPMF composites processing was 

successfully developed by using a twin-screw extruder. The advantage of using a twin-screw extrusion 

process is that it allows for the processing and fibrillation of cellulose at high solid content. To the best 

of our knowledge, there is lack of research on one-pot nanofibrillation of cellulose and nanocomposite 

production by extrusion, and this report provides extensive information on the potential use of the 

method for PP/CNF-OPMF composite production. From our results, the morphological observation of 

PP and its composites showed that a relatively good dispersion of CNF was achieved as no CNF 

aggregates was visible in the fractured surfaces of the PP/CNF-OPMF (3%). CNF started to aggregate 

at higher concentration (5 wt%). Evaluation of the mechanical properties of the PP/CNF-OPMF 

composites showed that the composite samples had higher tensile and flexural properties compared to 

neat PP. The improvement in mechanical properties of the composite samples could be related to the 

high crystallinity of PP/CNF-OPMF. Nevertheless, despite of steady increment in crystallinity with the 

increased amount of CNF, the mechanical properties of the composite samples with higher CNF content 



9

1234567890‘’“”

The Wood and Biofiber International Conference (WOBIC 2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 368 (2018) 012034 doi:10.1088/1757-899X/368/1/012034

 

 

 

 

 

 

reduced slightly, mainly due to the CNF aggregation which resulted in low stress transfer. Generally 

speaking, the ability to fibrillate and produce the composite from CNF-OPMF by one-step extrusion 

method as proposed herewith, is possible to be commercialised due to its fast, simple and easy technique.  
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