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Abstract. As a prospective raw material, lignin containing papermaking fibers can be easily 

recycled, dissolved with proper solvents and reused. However, in order to utilize this material, 

more eco-friendly green dissolution methods are also required. As a green solvent, ionic liquids 

(ILs) have been attracted too much interest in processing of lignocellulosic biopolymers, but 

the practical effect of lignin on this process was not clear. In this due, production of 

lignocellulosic bio-composite films from bleached (lignin-free) and unbleached (lignin-

containing) soda pulps was studied. First, fibers were dissolved in 1-Buthyl 3-Methyl 

Imidazolium Chloride (BMIMCL) at 85-95 °C. Following fabrication and preparation of the 

lignocellulosic films, certain mechanical and physical properties of cellulose composite films 

were analyzed. FESEM and XRD analytical methods were applied to study the product 

morphology and structure. Microscopic studies showed both fibers were disappeared in the 

ionic liquid in less than 1 h, although the unbleached fibers took more time for complete 

dissolution. The results indicated that the films produced from unbleached pulp had less tensile 

strength and more dynamic contact angle with water droplet than the ones produced from 

bleached pulp. Moreover, the optical tests revealed that the lignin resulted in less transparency 

of the films, but increased absorption of UV radiations. This implies that even impure 

lignocellulose feedstock can have promising features. 

1. Introduction 
The fibers, films and composite materials made of biopolymers have attracted much attention recently, 

as they help decreasing dependence on oil resources, while they are biocompatible, biodegradable and 

also due to their high performance [1-2]. 

Other cellulose, which is the most abundant natural polymer in our environment, is a fibrous, 

tough, water-insoluble substance with unique crystalline structure that plays a substantial role in blend 

with different biopolymers to produce various bio-products [1–3]. Cellulose is mainly isolated from 

lignocellulosic resources, which are abundant renewable organic materials on earth. In order to extract 

cellulose from lignocellulosic feedstocks, especially lignocellulosic residues, for fabrication of various 

products, dissolution and further processing of cellulose is necessary [3-4].  

However, usually dissolution of cellulose in common solvents is not readily achieved. Some 

features of this carbohydrate, such as: the strong inter and intera-molecular hydrogen bonding, high 

degrees of polymerization and crystallinity are some problematic factors in this respect. Although 

several solvent systems have been applied for preparation of regenerated cellulose materials, 
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generally, usual solvents are not industrially applicable due to high environmental toxicity, recovery 

problems or many adverse side reactions [5].  

In this respect, as a solvent, ionic liquid can be named as one of the proper candidates. Ionic 

Liquids (ILs) have recently attracted too much attention as “green solvents” for various chemical 

processes. Owing to very small vapor pressure, ILs can be easily recovered and reused. They are 

mostly in the liquid form at relatively low temperatures (below 100 °C), while possessing thermal and 

chemical stability and non-flammability [6–8].  

Pinkert et al. (2009), summarized a list of lignocellulosic materials which had been 

treated/dissolved with various ILs and different dissolution conditions [9]. Zhang et al. (2017), focused 

on fabricating methods of cellulose-based materials with ILs and its future trends [10]. In some 

studies, wood chips of different species were immersed in some of ionic liquids for even very long 

periods, at relatively high temperatures, but low solubility was observed [8]; while thermo-mechanical 

pulp (TMP) fibers or micro crystalline cellulose (MCC) particles, were readily dissolved in ionic 

liquids under similar conditions [4,9]. Therefore, in addition to lignocellulosic material particle size, 

the presence and structure of lignin may be important factors affecting the application of ILs for 

processing of lignocellulose materials [11], and moreover, the properties of the products.  

 

2. Experimental 
 

2.1 Materials 
As raw fibrous material, bagasse was provided from Pars Paper mill (Khuzestan, Iran), and used for 

further delignification and bleaching. 1-Butyl-3-Methyl Imidazolium Chloride (BMIMCl), was 

purchased from Sigma-Aldrich chemical Co. (Steinheim, Germany). All other reagents were analytical 

grade.  

2.2 Pulping and bleaching of lignocellulose material 
As a main delignification process, pulping was performed in a rotating digester equipped with 

electrical power under controlled pressure and temperature. The liquor/bagasse ratio was 8:1 and the 

alkaline charge 18 % NaOH, based on oven-dry bagasse weight (22.5 g/L). The time-to-temperature, 

pulping time and final temperature were set 15 min, 45 min and 170 °C, respectively. Following 

cooking process, the pulp was washed on a sieve of 200 mesh size with tap water. The pulping yield 

was calculated about 52 %, with final Kappa number of 16.5, according to TAPPI test method T236 

om-99, at least with three replications. 

Then bleaching treatment was carried out to eliminate residual lignin according to Zobel and 

McElwee (1958) procedure [12]. Air-dried fiber (2g) was placed in an Erlenmeyer flask, and 160 ml 

preheated distilled water was added. Afterwards, 20 ml of buffer solution (made from 29 ml acetic 

acid, 10.5 g sodium hydroxide and 170 ml distilled water) and 20 ml of sodium chlorite (34 g/l) were 

added respectively. Following stirring the mixture, the flask was placed in a hot-water bath at 70 °C 

for 2 h. Then the content of the flask was neutralized by sodium sulfite. Finally, the fibers were 

filtered and washed thoroughly with distilled water. The final Kappa was about 1.5. Also, the degree 

of polymerization (DP) of cellulose was analyzed according to TAPPI T230 om-04 test method.  

 

2.3  Treatment of lignocellulose material in IL and preparation of the film 
Lignocellulosic materials were firstly oven dried at 103 ± 2  ̊C for 24h. Then, they were added calmly 

into BMIMCL at 85-95 ̊C, with 2 % concentration. Consequently, the IL-treated lignocellulosic 

solution was used for fabrication of the films. For this purpose, the solution was stirred on a hot plate 

at a constant stirring rate (about 300 rpm) under N2 gas atmosphere, for 1 h. The clear lignocellulosic 

solution was then casted on a glass plate and kept in the ambient temperature for 24 h. Afterward, the 

produced gel was washed periodically for 24 h with distilled water to remove the IL. Finally, the films 

were gently blotted between filter papers and oven-dried at 60  ̊C for 12 h. 
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Also, for visualization of the dissolution process, some pictures were taken at 250x 

magnification using MICROS N-200 optical microscope (Austria), at various stages of dissolution of 

lignocellulosic materials in the IL. 

 

2.4 Characterization of the film samples 

2.4.1 FESEM. To study the structure of the produced film samples, a field emission scanning 

electron microscope (FE-SEM) MIRA3 XMU (TESCAN, Czech Republic) was used, at accelerating 

voltages of 3 and 15 kV, at various magnifications. In this due, the regenerated film samples were 

frozen in liquid nitrogen, immediately broken and then the fractured surfaces were coated with a very 

thin layer of gold, prior to take micrographs.  

2.4.2 X-ray diffraction.  The crystalline structures of the produced cellulosic films were studied 

using a Philips X’Pert MPD diffractometer (Eindhoven, Netherlands) with Cu Kα radiation (40 kV 

and 40 mA). The diffracted intensities were measured in the range of 2θ = 5 ̊ to 59 ̊ with the step size 

of 0.04 ̊ at 0.8 s per step.  

2.4.3 Tensile strength of the films. To Tensile strength (TS) of the samples were tested on a 

Universal Testing Machine (Model TVT-300Xp, Perten, Sweden), according to ASTM standard 

method D 882-02. In this due, the film samples were cut into rectangular pieces (5 cm × 1 cm) and the 

thickness was determined at 5 points. The samples were carefully placed between the grips, vertically, 

with 30 mm of initial grip separation distance and constant elongation rate of 10 mm/min.  

2.4.4 Contact angle measurements. The effect of lignin on affinity of the film surface toward 

water droplet was evaluated using a PG-X Goniometer, Switzerland, with a droplet volume of 60 μl, at 

23  ̊C and 50 % RH. 

2.4.5 UV–visible Spectroscopy (UV–vis). In order to analyze the optical transmittance (Tr) of the 

films, a UV–vis spectroscope (Lambda 25, PerkinElmer, Fremont, CA, USA) was used at wavelengths 

between 200 to 800 nm. The samples were cut into the shape of rectangular (9 mm × 30 mm) samples, 

directly placed in a spectrophotometer cell and a vacant quartz compartment was used as the reference.  
 

3. Results and discussion  
 

3.1 The effect of lignin on the dissolution process 
Figure 1, visualizes the effect of lignin on the dissolution process of bagasse fibers in the IL. The 

figure demonstrates that raw bagasse fibers were not significantly dissolved in the IL, even after some 

hours (>12 hours) (Figure 1c), while unbleached and bleached bagasse soda pulp (UBSP and BBSP) 

fibers were readily disappeared in the IL within less than 1 hr. (Figure 1a and 1b). This revealed that 

by means of pulping and bleaching, in which lignin structure is broken up and kappa number 

decreases to 16.5 (after pulping) and finally to 1.5 (following harsh bleaching), the dissolution process 

was highly facilitated [4]. 

On the other hand, the DP of cellulose was analysed. The results showed the DP of cellulose in 

UBSP (about 400) was higher than that of BBSP (about 250). This explains that, in addition to 

diminishing lignin content and structure, pulping and bleaching processes may also facilitate the 

dissolution process due to shortening of the cellulose chain. 
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Figure 1: The dissolution stages of the 

lignocellulosic material in the ionic liquid 

(IL): a. Bleached bagasse soda pulp (BBSP) 

fibers, b. Unbleached bagasse soda pulp 

(UBSP) fibers, and c. Raw bagasse fibers 

(RBF), before and after 1 hr stirring in the IL 

(magnification: 250X). 

 

3.2 FESEM micrographs  
Figure 2 shows the FESEM micrographs form the cross sectional view of the produced film samples. 

The pictures demonstrate a uniform dense micro and nano structure for both BBSP and UBSP films, in 

which no border line (separation line) is observed, even in the lignin containing films. 

 

 

Figure 2: FE-SEM images from cross 

sectional view of the produced films (a., 

b. BBSP film, and c., d. UBSP film 

samples, at 5 kX and 75 kX 

magnification, respectively). 

 

 

3.3 X-ray diffractograms  
Figure 3 demonstrates the X-ray diffraction pattern for the initial lignocellulosic materials and the 

produced films. In the figure, the diffraction patterns for BBSP and UBSP fibers, both display the 
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clear peaks at 2θ: 15.9°, 22.21°, and 34.67°, with the most intensity at 2θ: 22.21°, which show the 

normal pattern of cellulose type-I (native cellulose). On the other hand, the diffraction pattern of 

regenerated films exhibit one broad scattering in a lower angle around 2θ: 20° with less intensity. This 

broad peak (more FWHM (full width at half maximum) of the peak), demonstrated the formation of 

cellulose structure with less crystallite sizes, less ordered domains in the cellulose film, or both [1–

3,13]. In addition, less intensity of the main peak indicates that the regenerated films predominantly 

consist of amorphous regions. 

Moreover, the X-ray pattern obtained for BBSP fibers and produced films mostly resembled to 

that of UBSP counterparts, indicating lignin did not significantly affect the material and product 

crystalline structure (Figure 3). 

 

 
Figure 3: X-ray diffraction pattern of BBSP, UBSP fibers and their 

regenerated films. 

 

3.4 Mechanical Strength 
The tensile strength (TS) of the films was studied as shown in Figure 4. The figure shows that the TS 

of BBSP film samples (150.15 ± 5.6 MPa) was higher than that of UBSP ones, although the DP of 

cellulose was higher in UBSP. This may indicate that lignin, as an impurity in the cellulose matrix, 

had negative effect on hydrogen bonding during regeneration of cellulosic films [1, 14]. 

 

 
Figure 4: Tensile strength (TS) of the films. 
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3.5 Contact angle 
Generally, the contact angle (CA) of the material surface with water droplets implies to the 

hydrophilicity of the samples. Furthermore, the morphology and roughness of the surface may affect 

the wettability. If the CA is smaller than 90 °, the film surface is considered hydrophilic [3]. 

 

Table 1. The contact angles of the films with water droplet 

Samples Contact angle at 
collision moment (°) 

BBSP film 69.2 ± 4.6 

UBSP film 82 ± 8.8 

 

Table 1 presents the data of contact angles of water droplets at the collision moment with the films. 

BBSP and UBSP films. The results, indicates that BBSP and UBSP films, both had hydrophilic 

properties, while the increase in CA as a result of UBSP film may be attributed to effect of lignin, as 

lignin is reported to help the film surface smoothness and also to reduction of available hydroxyl 

groups on the film surface [15-16]. 

 

3.6 UV-visible spectra 
Figure 5 depicts the transmittance spectra of the films in the range of 200-800 nm. The graph 

demonstrates the proper transparency (Tr) of the films in the evaluated range, although the data show 

that lignin caused a minimal reduction of Tr, while, instead, it caused increased UV absorption (for 

UBSP film in the range of 200-400 nm).   

 

 

Figure 5: Transparency (Tr) of the films. 

 

4. Conclusion 
1. Microscopic studies showed both BBSP and UBSP fibers were disappeared in the ionic liquid in 

some minutes, although the lignin containing unbleached type of fibers took more time for 

complete dissolution, while prior to pulping, the compact structure of lignocellulose structure of 

raw bagasse fibers did not allow significant dissolution in the IL. 

2. The results indicated that the BBSP films had higher tensile strength, although the DP of cellulose 

was less for it. 

3. Presence of the lignin resulted in an increase in the dynamic contact angle of the films with water 

droplet. 
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4. The lignin resulted in less transparency of the films, but increased absorption of UV radiations. 

5. The above mentioned results showed that even impure lignocellulose feedstock, specially following 

pulping process can have promising features. 
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