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Abstract. Performance of statistically undefined reinforced concrete constructions in harsh 

weather conditions is characterised by the presence of temperature forces. The strength of 

temperature forces is influenced by deformation and durability qualities of the concrete, crack 

formation and pliability of supports. Experiments were carried out in order to establish 

correlation between support pliability and temperature forces in bendable reinforced concrete 

elements in the conditions of limited mobility of supports. The result of the present research 

was experimental data on the changes of temperature forces depending on the horizontal 

pliability of swivel supports. Analytical dependency was suggested to calculate support 

pliability and change rigidity of reinforced concrete beams under the influence of load and low 

temperatures. 

1. Introduction 

Performance of statistically undefined reinforced concrete constructions in harsh weather conditions is 

characterised by the presence of temperature forces [1-4]. These forces, in contract to load pressure, 

can either increase or become zero. The increase of these forces is related to an increase of durability 

and deformation characteristics of the concrete in its frozen state, and the decrease is related to crack 

formation; deterioration of concrete structures as a result of cyclic freezing - melting; pliability of 

supports [5-8]. Current standards on reinforced concrete constructions are limited to recommendations 

to take into account changes in rigidity of constructions and temperature forces in their frozen state 

and in the cycle of freezing and de-freezing [9]. As a result, actual loads can lead to an increase of an 

acceptable level of stress in terms of crack endurance and durability. 

The most frequent is the case when a bendable element is pinched or limited in its axial movements 

along the end face. In the former case when the end face is pinched, at low temperatures there is a 

bendable moment and the stretching force, and in the latter - only the stretching force. In experiments 

the simplest case was used - combining temperature and load pressure - a bendable element is limited 

at its end faces at the level of supporting parts in axial movements. The degree of horizontal pliability 

of supports, the level of transverse load pressure, number of freezing and de-freezing cycles were 

varied. 

The aim of the research is to study the degree of influence of pliability of supports on temperature 

forces in bendable reinforced concrete elements in cases when support mobility is limited. 
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2. Materials and methods 

Reinforced concrete beams of rectangular cross-section with dimensions of 10cm x 20cm and the 

length of 220cm have been used as experimental samples. The beams were reinforced by spacial 

bound frames. The structure of reinforced concrete beams is shown on figure 1. 

 

Figure 1. Structure of a beam and sensor location: 1 – working frame Ø 12mm; 2 – clamps Ø 

12mm, 3 – sensors with a base of 20mm, sensors with a base of 50mm. 

In the stretched zone the frame consisted of two rods with a diameter of 12mm from reinforced 

steel of class A400 (type 35 GS), and in the compressed zone for clamp fastening - two rods Ø 5 mm 

from cold-drawn rebar wire of class B500. Clamps were manufactured from rebar wire Ø 5 mm of 

class B500 and were located along the length of the beam with a 50mm step. In the clear bend zone 

clamps were not used. The rebar percentage was 1.29%. 

The concrete’s composition in terms of its weight is 1 : 1.2 : 2.2 with W/C=0.32. The super 

plastificator C-3 was injected into the concrete mix in the quantity of 0.7% and silicon organic liquid 

GKZh:-94 in the quantity of 0.15% of the whole mass of the cement. The expenditure of cement per 

1m3 of the concrete mix was 500 kg. Frost-resistance of the concrete, determined according to the 

sped-up methodology [10], was F500. To prepare the concrete mix, granite crashed stone of 5-15mm 

fraction was used as well as river sand, portland-cement of brand 400. 

Concreting of samples was carried out in a metallic demountable formwork. Compaction of the 

concrete mix was done on the vibration table. After three days of hardening, stripping was carried out. 

During the 28 days, samples were kept in damp sawdust, and then at temperatures +15±5 °С in the 

conditions of a production space with relative humidity of 60-65%. 

To determine durability and deformation characteristics of concrete samples along with reinforced 

concrete elements, cubes of dimensions 10x10x10 and prisms with 10x10x40 cm were manufactured 

from the same concrete mix. Durability of concrete for the prism, its durability in terms of stretching 

and a module of elasticity were defined in accordance with requirements [11]. Samples - prisms with 

dimensions of 10x10x40 cm - were tested in a thermal room with corresponding negative 

temperatures. 
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Temperature deformations of the concrete were determined for concrete prisms (10x10x40 cm) 

according to the methodology outlined in [12-15]. Prior to testing, prisms went through water 

saturation under atmospheric pressure step by step for 7 days. Then the samples were enclosed in 

rubber cases in order to preserve humidity during the whole time of the experiment. Temperature in 

the prism’s concrete was determined by the means of thermal pairs put inside. Measurements of load 

and temperature deformations were carried out by indicators of hourly type with division value of 

0.001 mm and quartz extensions. 

Beams with hinge-ductile supports were tested at the power point, the structure of which is 

presented on figure 3. The set up included a rough steel beam with massive end face stands, serving as 

support for the bendable element in order to limit its movement in axial direction. This was done by 

fixing rebar parts on end face stands by anchor screw-nuts. Pliability of supports was created by spring  

shims of specific rigidity.  

Beam testing was carried out in a refrigerating chamber of the working volume of 12m3 and 

minimal negative temperature of -50°С. The set-up was fixed to the floor by anchor bolts. 

 

Figure 2. Structure of a power set-up to test beams: 

1 - sample; 2 - metallic construction of a power stand; 3 - anchor screw-nuts on rebar parts; 4 - 

insulator; 5 - spring; 6 - traverses; 7 - bottom support; 8 - screw-nuts; 9 - hydraulic jack; 10 - hauls. 
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Beams were set up on two catenary supports and were loaded with two focused transverse forces 

until they reach the needed level by using hydraulic jacks, each 5 tf. Afterwards when springs were 

fixed by traverse and anchor screw-nuts, jacks were taken off. The beam then was held under pressure 

with a temperature of 15°С for one day. Then the sample was fixed at longitudinal offsets by anchor 

screw-nuts (knot I, figure 2) and was cooled to -50°С with 10°С steps. The beam was kept at each step 

of temperature decrease until the cross-section and the length were all the same temperature. After 

taking measurements from equipment installed on the beam, the next step of temperature lowering was 

carried out. After the temperature reached -50°С, the researched beam was warmed to +15°С. The age 

of samples by the time of testing was 180 days. Prior to testing beams were water-saturated for 7 days. 

During the experiment the amount of traverse load (P/Pult ) and pliability of supports (Δsup / ΔT) 

were varied. 

During load and temperature pressure of beams the following things were measured: concrete and 

rebar deformation; movement of anchor screw-nuts and rebar extensions; temperature of concrete and 

rebar along beam cross-sections; opening width. The location of tools on the studied samples is 

presented on figure 3. 

 

 

Figure 3. The location of tools on the sampled beam: 

1 - indicator with a value division of 0.001mm in the zone of a clear bend; 2 - indicators (0.01mm) 

to determine sagging; 3 - indicators (0.001mm) on the load stand; 4 - indicators (0.001mm) to 

determine collapsing of anchor screw-nuts; 5 - quartz extensions. 

3. Results 

To calculate the temperature forces, stresses and strains in the statically indeterminate 

reinforced concrete structures, it is necessary to have data on the magnitude of the free 

thermal strains of the reinforcement and concrete. The values of these strains are 

characterized by the thermal strain coefficient (TSC). 
Figure 4 shows changes in the free thermal strains of the concrete with the humidity W=5.0%, 

reinforcement (class A400) and reinforced concrete beams when the temperature is changed to -50°С. 
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Figure 4. The thermal strains of the reinforced concrete beams, the concrete and reinforcement. 

The graphs show when the temperature is lowered to -50 ° C, the thermal strains of the concrete 

change according to the non-linear law, i.e. the thermal strain coefficient (TSC) is not a constant value. 

At -50 ° C its value was 50.88 10 1 / 
0
С. The reinforcement thermal strains of the unfixed reinforced 

concrete beam are less than the thermal strains of the reinforcement steel by 24%. At the same time, 

the value of the TSC of the steel remains constant and equal to 51.19 10 1/
0
С throughout the 

temperature range. The reinforcement thermal strains in reinforced concrete beam structure are bigger 

than those of the reinforcement steel by 3.3%. This is due to the fact that the concrete has a smaller 

TSC than the reinforcement. As a result, the "preliminary reduction" effect of the beam by the 

reinforcement is created, and the additional reduction of the entire reinforced concrete sample is 

observed [16]. 

The deformation and strength characteristics of the concrete and reinforcement are presented in the 

table 1. 

Table 1. 

CT 0  

Concrete Reinforcement 

W ,% 
btR , 

MPa 15,bt

bt

R

R
 

310btE , 

MPa 
15,bt

bt

E

E
 

sR , 

MPa 15,s

s

R

R
 

310sE , 

MPa 
15,s

s

E

E
 

15 5.0 3.3 1.0 33.4 1.0 433 1.0 2.0 1.0 

-50 5.0 5.5 1.67 38.4 1.15 465 1.07 2.08 1.04 

 

The stretching strength of the concrete, its elasticity modules increase when the temperature 

decreases to -50 
0
С, respectively by 67% and 15%. In case of the decreasing temperature of the 

reinforced concrete elements these parameters change is taken into account with the help of the 

corresponding coefficients of the concrete working conditions [17-19]. The strength and elasticity 

modulus of reinforcement increase when the temperature decreases to -50 
0
С, respectively by 7% and 
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4%. These parameters change with the decreasing temperature is recommended to be taken into 

account in the accordance with the proposals [20]. 

3 2
, 9.53 10 (20 )s T sR R T         (1) 

4
, 1 9.3 10 (20 )s T sE E T      

 
    (2) 

where: 

 
sR , 

sE  -  the strength and elasticity modulus of the reinforcement in the normal 

conditions, 

 T  - the negative temperature, 
0
С. 

In Figure 5 the temperature forces are presented, they appear in the statically indeterminate beam 

with the different initial transverse loading depending on the relative compliance of the supports (

Tsup ). 

 

 

Figure 5. Temperature forces in the statically indeterminate beam:  

 

 

In the compliance absence, the temperature tensile force decreases at the level of transverse loading 

ultPP = 0.3; 0.45; 0.65 respectively for 32%, 43%, 74% in the reinforced concrete beams. With the 

support compliance of 75%, the temperature force is reduced, on the average, by 74% for all the 

transverse loading levels. 

To compare with the experimental data, the graphs of the change in the temperature beam tensile 

force obtained by calculation are presented in Figure 5. The calculation of the forces was based on the 
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equation solution of the temperature-force strain consistency of the beam and supports, through which 

the tensile force is transferred to the stand [21, 22]: 

NT  sup       (3) 

where: 

 
T  -  the temperature displacements of the free-lying beam at the level of the working 

reinforcement; 

 sup  -  the displacements knots of the reinforcement inserts (the support compliance); 

 
N  - the beam displacement created by the temperature force at the level of the work 

reinforcement.  
 

From the equation (3) we obtain the expression to determine the temperature tensile force:  



















C

L

D

eL
N TT

2
0

sup)(     (4) 

where: 

 L   - the beam length; 

 
0e  - the eccentricity of the tensile temperature force according to the gravity center of 

the chosen section; 

 D  - the flexural beam rigidity in the zone of the pure bending; 

 C  - the axial beam rigidity in the zone of the pure bending. 
The remaining notations are given in formula (3). The rigidity of the reinforced concrete beam was 

determined by the method described in [4, 22]. 

The calculation of the statically indeterminate reinforced concrete structures is carried out by the 

method of the successive approximations with the adoption of the real section rigidity. The rigidity is a 

variable that depends on the stress state of the structure. Thus, the rigidity of the reinforced concrete 

element and its temperature force are interdependent. The number of successive approximations can 

be reduced if the rigidity is initially set closer to the actual rigidity with the corresponding external 

load and temperature reaction. In this connection, the approximation of the obtained experimental data 

on the temperature reaction change was made depending on the transverse loading level and the 

support compliance. As a result, the following empirical dependence is obtained: 

sup ,0(1 1.13 ) (1 0.978 )T ult T TN P P N            (5) 

where: 

 ultPP  - the level of the transverse force loading; 

 Tsup  - the relative support compliance; 

 0,TN  - the temperature force that occurs at the temperature of -50
0
С in case of the non-

shifting supports ( 0sup  ). 
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4. Conclusion  

The conducted researches showed that the thermal strains of the unfixed beam are by 26% less than 

the strains of reinforcement steel, i.e. it is necessary to take into account the forces arising due to the 

difference in the TSC of the concrete and reinforcement. The tensile strength of the water-saturated 

concrete at -50 °C increases by 67%, the elasticity modulus increases by 15%. The strength and 

elasticity modulus of the reinforcement, class A400, increase when the temperature decreases to -50 

°C, respectively, by 7% and 4%. 

In the support compliance absence, the temperature reactions are reduced by 74% in the statically 

indeterminate reinforced concrete beam with the increase in the transverse loading level to 0.65 of the 

ultimate load. The support shifting of 75% from the temperature displacements of the unfixed element 

leads to the decrease in the temperature forces, on the average, by 74% regardless of the level of the 

transverse loading. 

Thus, the results of the conducted studies showed that the support compliance of the nodes of the 

statically indeterminate reinforced concrete structures leads to the significant decrease in the 

temperature reactions. The account of the support compliance and, correspondingly, the decrease in 

the temperature forces makes it possible to estimate the stress-strain state of the statically 

indeterminate structures more correctly. 

The studies, the results of which are presented in this article, were carried out in case of the short-

time transverse loading in the conditions of the single freezing to -50 °C. In the further studies, it is 

proposed to test statically indeterminate reinforced concrete beams in the conditions of the long 

transverse loading and cyclic freezing and thawing.  
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