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Abstract. The structural reliability recommended in Eurocodes and other international 
documents vary within a broad range, while the reference to the failure consequences and 
design working life is mentioned only very vaguely. In some cases the target reliability indexes 
are indicated for one or two reference periods (in Eurocodes for 1 year and 50 years), however 
no explicit link to the design working life is usually provided. This article attempts to clarify 
the relationship between the target reliability levels, failure consequences, the design working 
life and the discount rate. The theoretical study based on probabilistic optimization is 
supplemented by recommendations useful for code makers and required by practicing 
engineers. It appears that the optimum reliability indices depend primarily on the ratio of the 
cost of structural failure to the cost per unit of structural parameter, and less significantly on 
the design working life and on the discount rate.  
 

1.  Introduction 
The target reliability levels recommended in various national and international documents for new 
structures are inconsistent in terms of the values and the criteria according to which the appropriate 
values are to be selected. Almost no recommendations are available for temporary structures. In 
general, optimum reliability levels can be obtained by considering both the cost of the structure and 
the expected cost of failure over the design working life.  

The design working life is understood as an assumed period of time for which a structure is to be 
used for its intended purpose without any major repair work being necessary. Indicative values of 
design working life (10 to 100 years for different types of new structures) are given in EN 1990 (2002) 
[2]. Recommended values of reliability indexes are given for two reference periods, 1 year and 50 
years (see Table 1), without any explicit link to the design working life that generally differs from the 
reference period, while no specific indicative values are available for temporary structures.  

 It should be emphasized that the reference period is understood as a chosen period of time used as 
a basis for statistically assessing the time variant basic random variables, and the corresponding 
probability of failure. The concept of reference period is therefore fundamentally different from the 
concept of design working life. Confusion is often caused when the difference between these two 
concepts is not recognized.  

It should be recognized that the couple of β values (for 1 year and 50 years) given in Table 1 for 
each reliability class correspond to the same reliability level. Practical application of these values, 
however, depends on the time period considered in the verification, which may be linked to available 
probabilistic information concerning time variant basic variables (imposed load, wind, earthquake, 
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etc.). It should be noted that the reference period of 50 years is also accepted as the design working 
life for common structures (see the discussion by Diamantidis (2009) [1]). 

 
 Table 1. Reliability classification according to EN 1990 (2002) [2]. 

Reliability 
classes 

Consequences 
of structural 
failure 

Reliability index β for 
reference period  

Examples of buildings and 
civil engineering works 

1 year 50 years  
RC3 – high High 5.2 4.3 Bridges, public buildings 
RC2 – normal Medium 4.7 3.8 Residences and offices 
RC1 – low Low 4.2 3.3 Agricultural buildings  

 
For example, considering a structure of reliability class 2 having a design working life of 50 years, the 
reliability index β = 3.8 should be used, provided that probabilistic models of basic variables are 
available for this period. The same reliability level is achieved when a reference period of 1 year, and 
a target of β = 4.7 are applied using the theoretical models for a reference period of one year. Thus, 
when designing a structural member, similar dimensions (reinforcement area) would be obtained 
considering β = 4.7 and basic variables related to 1 year or β = 3.8 and basic variables related to 50 
years.  
A more detailed recommendation concerning the target reliability is provided by ISO 2394 (1998) [7], 
where the target reliability indexes are indicated for the whole design working life without any 
restriction concerning its length, and are related not only to the consequences, but also to the relative 
costs of safety measures (Table 2).  

Table 2. Life-time target reliability indexes β  according to 
ISO 2394 (1998) [7]. 

Relative costs of  
safety measures 

Consequences of failure 
small some moderate great 

High 0 1.5 2.3 3.1 
Moderate 1.3 2.3 3.1 3.8 
Low 2.3 3.1 3.8 4.3 

 
Similar recommendations are provided in the JCSS (2001) [8] Probabilistic Model Code (Table 3) 
based on the previous study of Rackwitz (2000) [9]. The recommended target reliability indexes are 
also related to both the consequences and to the relative costs of safety measures, though for a 
reference period of 1 year. The consequence classes in JCSS (2001) [8] (similar to EN 1990, 2002[2]) 
are linked to the ratio ρ defined as the ratio (Cstr + Cf)/ Cstr of the total cost induced by a failure (cost of 
construction Cstr plus direct failure costs Cf) to the construction cost Cstr as follows: 

• Class 1 Minor Consequences: ρ is less than approximately 2; risk to life, given a failure, is 
small to negligible and the economic consequences are small or negligible (e.g. agricultural 
structures, silos, masts); 

• Class 2 Moderate Consequences: ρ is between 2 and 5; risk to life, given a failure, is medium 
and the economic consequences are considerable (e.g. office buildings, industrial buildings, 
apartment buildings); 

• Class 3 Large Consequences: ρ is between 5 and 10; risk to life, given a failure, is high, and 
the economic consequences are significant (e.g. main bridges, theatres, hospitals, high rise 
buildings). 

However, it is not quite clear what is meant in JCSS (2001) [8] by “the direct failure costs”. This term 
indicates that there may be some other “indirect costs” that may affect the total expected cost. Here it 
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is assumed that the failure costs Cf cover all additional direct and indirect costs (except the structural 
costs Cstr) induced by the failure. The structural costs are considered separately and related to the costs 
needed for an improvement of safety (costs per unit of decision parameter C1).   

Both the documents ISO 2394 (1998) [7] and JCSS (2001) [8] seem to recommend reliability 
indexes that are lower than those given in EN 1990 (2002) [2] even for the “small relative costs” of 
safety measures. It should be noted that EN 1990 (2002) [2] gives the reliability indexes for two 
reference periods (1 and 50 years) that may be accepted as the design working life for common 
structures (see also the discussion provided by Diamantidis (2009) [1]). ISO 2394 (1998) [7] 
recommends indexes for “life-time, examples”, thus related to the design working life, without any 
restrictions, while Probabilistic Model Code by JCSS (2001) [8] provides reliability indexes for the 
reference period of 1 year. 

Table 3. Tentative target reliability indexes β (and associated target failure rates) related to one year 
reference period and ultimate limit states according to JCSS (2001) [8]. 

Relative costs of 
safety measures 

Minor consequences 
of failure 

Moderate consequences 
of failure 

Large consequences of 
failure 

Large β = 3.1 (p ≈ 10−3) β = 3.3 (p ≈ 5×10−4) β = 3.7 (p ≈ 10−4) 
Normal β = 3.7 (p ≈ 10−4) β = 4.2 (p ≈ 10−5) β = 4.4 (p ≈ 5×10−6) 
Small β = 4.2 (p ≈ 10−5) β =4.4 (p≈ 5×10−6) β = 4.7 (p ≈ 10−6) 

 
However, a clear link between the design working life and the target reliability level is not apparent 

from any of the above-mentioned documents. Thus, it is not clear which target reliability index should 
be used for a given design working life different from 50 years (say 10 years).  

A new promising approach to specify the target reliability based on the concept of Life Quality 
Index (Fischer et al., 2012) [3] is considered in an on-going revision of the International Standard ISO 
2394 (1998) [7].  

The basic aim of this contribution is to clarify the link between the design working life and the 
reliability index, and to provide guidance for specification of the target reliability level for a given 
design working life. The submitted theoretical study based on probabilistic optimization is 
supplemented by practical recommendations. This contribution is an extension of the previous study 
by Holicky and Retief (2011) [6], and Holicky [10]. 

2.  General principles of probabilistic optimization 
Probabilistic optimization may be based on a certain objective function adjusted to given condition of 
heritage structure. A simplified form (not covering monitoring and maintenance) may be expressed as 
the present value of the total expected cost Ctot(x,o,q,n)   

               Ctot(x,o,q,n) = Cstr ∑ 𝑃f𝑛
1 (𝑥, 𝑖)𝑄(𝑜, 𝑖)+Cf ∑ 𝑃f𝑛

1 (𝑥, 𝑖)𝑄(𝑞, 𝑖) + C0 + x C1                        (1)                                                             

The cost of construction Cstr including artistic value is discounted as it is paid in the future after 
number of years i. Here x denotes the decision parameter of the optimization (a parameter of structural 
resistance), o is the annual obsolescence (oldness) rate of heritage structure enhanced by annual 
discount rate q. 

The cost of failure Cf including relevant artistic values is also discounted as it is paid after number 
of years i, q is the annual discount rate (without obsolescence rate o), e.g. 0.03, an average long run 
value of the real annual discount rate in European countries, n is the number of years to the failure, 
which may differ from the design working life (specified usually as 50 or 100 years).  

Further, Pf(x,i) is the failure probability in year i, Q(o,i) is the discount factor dependent on the 
annual obsolescence rate o, Q(q,i) is the discount factor dependent on the annual discount rate q and 
the number of years i, C0 is the initial cost of intervention independent of the decision parameter x and 
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failure (a quantity not affecting the optimization), and C1 is the cost per unit of the decision parameter 
x (a structural parameter quantity affecting the structural resistance and optimization).  

Note that the design working life may generally differ from the time to failure denoted by the 
number of years n and considered here as an independent variable affecting the probability of failure. 
Maintenance and possible repair of the structure is not included in the objective function (1), and these 
aspects are to be considered in further studies. Assuming independent failure events in subsequent 
years, the annual probability of failure Pf(x,i) in year i may be approximated by the geometric 
sequence  

 Pf(x,i) = p(x) (1 − p(x))i−1                                          (2) 

The initial annual probability of failure p(x) is dependent on the decision parameter x. Note that annual 
failure probabilities can be assumed to be independent when failure probabilities are chiefly 
influenced by time-variant loads (climatic actions, traffic loads, accidental loads). Then the failure 
probability Pfn(x) during n years can be estimated by the sum of the sequence Pf(x,i), that can be 
expressed as  

       Pfn(x,n) = 1 − (1 − p(x))n ≈ n p(x)                                          (3) 

Note that the approximation indicated in equation (3) is fully acceptable for small annual probabilities 
p(x) < 10−3.  

The discount factor of the present value of the expected future costs in year i is considered in the 
usual form as 

 Q(q,i) = 1 / (1+q)i                                                                     (4)  

Thus, the cost of malfunctioning Cf is discounted by the factor Q(q,i) depending on the discount rate q 
and the point in time (year number defined as i) when the loss of structural utility occurs.  

Considering equations (2) and (4) the total costs Ctot(x,q,n) described by equation (1)  may be 
written in a simplified form as  

 Ctot(x,o,q,n) = Cstr PQ(x,o,n) + Cf p(x) PQ(x,q,n) + C0  + x C1                           (5) 

Here the total sum of expected structural cost after n years depends on present structural cost Cstr, the 
annual probability p(x) and on the sum of the geometric sequence having the quotient (1− p(x))/(1 + 
o), denoted as the time factor PQ(x,o,n). Similarly malfunctioning costs after of n years is dependent 
on the product of the present value of malfunction cost Cf, the annual probability p(x) and a sum of the 
geometric sequence having the quotient (1− p(x))/(1+ q), denoted as the time factor PQ(x,q,n):  

 

1 ( )1 ( ) 11 11( , , ) , ( , , )
1 ( ) 1 ( )1 11 1

 −−  −−    ++   = =
−   −− −   + +   

nn p xp x
qoPQ x o n PQ x q n

p x p x
o q          (6) 

In general the total cost Ctot(x,o,q,n) depends on the costs C0, C1, Cstr, Cf, the annual probability of 
failure p(x), the oldness rate o, on the discount rate q, and the number of years n. Note that for small 
probabilities of failure p(x) (for appropriate structural parameter x) and very small (zero) rates o and q, 
the time factor PQ(x,o,n) ≈ PQ(x,q,n) ≈ n. Variation of the time factor PQ(x,o,n) with n for o = 0, 
0.03, 0.06 and 0.13 is shown in figure 1. The same variation holds for the time factor PQ(x,q,n). 
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Figure 1. Variation of the time factor PQ(x,o,n) with n for o = 0, 0.03, 0.06 and 0.13. 

 

It follows from figure 1 that the obsolescence rate o and discount rate q may affect the total costs and 
consequently their consideration in optimization procedure should be adjusted to actual situations of 
the heritage structure. The necessary condition for the minimum of the total cost expressed by 
objective function (1) is   
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Equation (7) represents a general form of the necessary condition for the minimum of total cost 
Ctot(x,o,q,n), the optimum value xopt of the parameter x, and the optimum annual probability of failure 
popt = p(xopt). The optimum probability for a given number of years n follows from equation (7) as 

       opt

opt

str f
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f f
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i x x
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C x
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 (8)        

Equation (8) represents a simplified form of the necessary condition for the minimum of total cost 
Ctot(x,o,q,n), the optimum value xopt of the parameter x, and the optimum annual probability of failure 
popt = p(xopt). The optimum probability for the total design working life Td = n years follows from 
equation (3) as 

 Pfn,opt = 1 – (1 – popt)n ≈ n popt                                                           (9) 

The corresponding optimum reliability index βopt = − Φ-1(Pfn,opt). These quantities are in general 
dependent on the cost ratios Cstr/C1 and Cf/C1, rates o and q, and on the number of years n. 

PQ(1,o,
 

o = 0 
o = 0.03 

o = 0.06 

o = 0.13 

n 
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3.  Failure probability of a generic structural member 
Consider a generic structural member described by the limit state function Z(x) as 

 Z(x) = x f – (G+Q)                                                       (10) 

Here x denotes a deterministic structural parameter (e.g. the cross-section area), f the strength of the 
material, G the load effect due to permanent load and Q the load effect due to variable load. 
Theoretical models of the random quantities f, G and Q considered in the following example are given 
in Table 4 (adopted from the probability model code described in JCSS (2001) [8] and Holicky (2009) 
[4]). 

 
Table 4. Theoretical models of the random variables f, G and Q (annual extremes). 

Variables Distribution Mean Standard deviation Coefficient of variation 
f Lognormal 100 10 0.10 
G Normal 35 3,5 0.10 
Q Gumbel 10 5 0.50 

 
Considering the theoretical models given in Table 4, the reliability margin Z(x) may be well 
approximated by the three parameter lognormal distribution ΦZ(x) that provides sufficient accuracy. 
The annual failure probability p(x) is then given as  

 p(x) = ΦZ(x)(Z(x) = 0)                                          (11) 

The annual failure probability p(x) in equation (11) is evaluated for the reliability margin Z(x) = 0 
using three parameter for Z(x); then for x = 1 and n = 50 the failure probability is Pfn(1) ≈ 6.7 10−5and 
corresponding reliability index is β ≈ 3.8 (common value indicated in EN 1990 (2002) [2]).  

4.  An example 
The following example illustrates the general principles, as well as a special case of probabilistic 
optimization. To simplify the analysis, the total costs Ctot(x,o,q,n) given by equation (5) are 
transformed to the standardized form κtot(x,o,q,n) given as 

                        

tot 0
tot

1

str f

1 1

( , , , )( , , , )

( ) ( , , ) ( , , )

C x o q n Cx o q n
C

C Cp x PQ x o n PQ x q n x
C C

κ
−

= =

 
+ + 

 

            (12) 

The annual probability of failure p(x) considered here for a general structural member is given by 
equation (11). However, the following procedure may be applied for any relevant dependence of the 
failure probability p(x) expressed as a function of a suitable structural parameter x.  

In the example illustrated in figure 2, it is assumed that the rates o = 0.13 is q = 0.03, and the year 
number when the failure occurs is n = 50. Under these assumptions, figure 2 shows the variation of the 
total standardized costs κtot(x,o,q,n) (given by equation (12)), and the optimum reliability indexβopt, 
with structural parameter x. 

The following figure 3 indicates variation of the optimum reliability index βopt with the cost ratio 
Cf/C1 for the rates o = 0.13, q =0.03, number of years n = 50 and selected Cstr/C1 = 10, 100, 1000, 
10000. 
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Figure 2. Variation of the total standardized cost κtot(x,q,n) and the optimum reliability index βopt 
with the decision parameter x for o = 0.13, q =0.03, n = 50, Cstr/C1 = 100, and selected Cf/C1 = 0, 

1000, 10000, 100000 and 1000000. 
 

Figure 3. Variation of the optimum reliability index βopt with the cost ratio Cf/C1 for o = 0.13, q 
=0.03, n = 50 and selected Cstr/C1 = 10,  100, 1000, 10000. 
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5. Transformation of the target reliability for different reference periods 
When the main uncertainty comes from actions that have statistically independent maxima in each 
year, the values of β for a different reference period expressed in years n can be calculated using the 
following expression [2]: 

 
 [ ]nn )()( 1ββ Φ=Φ   (13) 

where βn is the reliability index for a reference period of n years and β1 is the reliability index for one 
year. However, the statistical maxima of actions in subsequent years are usually correlated. Then the 
relationship (13) is not correct and correlation of failure events should be taken into account.  

Assume that variation of annual failure probabilities with time is approximated by rectangular 
wave process with the mean duration of rectangles of k years. When the mean duration k = 1, then the 
failures in subsequent years are assumed to be independent and the relation (13) can be used. If k = n, 
then the annual failures within the whole reference period of n years are fully dependent and the 
annual target reliability will be valid for the whole reference period of n years. In general the 
reliability index βnk for the reference period of n years and independence interval of k years can be 
derived from reliability index β1, specified for the reference period of one year, using the following 
formula:  

 Φ(β nk) = Φ(β 1)n/k (14) 

Here the independence interval k ≤ n corresponds to the mean time period in years for which the 
failures in subsequent periods of k years are assumed to be mutually independent. An example of 
determining βn,k for n = 50 years and k = 1, 10 and 50 years is shown in figure 4. 
 

Figure 4. Variation of the target reliability level βnk with annual target index β1 for the 
reference period n = 50 years and selected independence intervals k = 1, 10 and 50 years. 
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Similar results for the transformation of the target reliability β may be obtained considering 
dependence of failure probability Fi during all the years i = 1 to n. Assume that the maximum failure 
probability P{F1} refers to a given year 1 and the average failure probabilities during remaining years i 
= 2 to n are reduced by the probability ratio b = (P{Fi}/P(F1). Newly derive target reliability index is 
now denoted βnb is shown in figure 5.  

For b = 0 probability P{Fi }= 0, i = 2 to n, and the total failure probability is given only by P(F1) 
This case corresponds to the independence interval k = n year (then βnb  = βnk  = β1 ). When the 
probability ratio b = 1 the failure probability during every year i is the same P{Fi } = P{ F1}. This case 
corresponds to independence interval k = 1. Variation of the target reliability level βnb with annual 
target index β1 for the reference period n = 50 years and selected probability ratios b = 1; 0,2 and 0 is 
illustrated in figure 5. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Variation of the target reliability level βnb with annual target index β1 for the reference 
period n = 50 years and selected probability ratios b = 1; 0,2 and 0. 

 
 

It follows from figure 4 and 5 that for n = 50 (approximately life time) the transformation of the 
target reliability is equal (βnb = βnk ), when k =  b = 1, or when k = 50 and b = 0,0. The probability 
ratio b = 0,2, when P{Fi} = 0,2 P{F1} for any i not equal to 1, corresponds approximately to the 
independence interval k = 5 years. 
     

6. Conclusion and recommendation  
The target reliability levels recommended in various national and international documents are 
inconsistent in terms of the values and the criteria according to which the appropriate values are to be 
selected. It is shown that the target reliability of structures can be derived from theoretical principles 
of probabilistic optimization considering the objective function as the total costs expressed as a sum of 
the initial costs C0, the marginal costs x C1 (where x denotes the decision parameter and C1 the 
incremental cost of decision parameter x), and the failure consequences consisting of the construction 
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costs Cstr and failure costs Cf (the loss of structural utility at the time of failure), these being taken into 
account by the relevant cost ratios Cstr/ C1 and Cf /C1.  

The construction costs Cstr is discounted considering an annual obsolescence (oldness) rate q and 
the time to failure (number of years) n, the failure costs Cf is discounted considering an annual 
discount rate q and the time to failure (number of years) n. In such a way the total cost is affected 
(reduced) by the obsolescence rate o and discount rate q, and the number of years n. 

An example of the probabilistic optimization of a generic structural member clearly shows (see 
Figure 1, and 2) that the optimal reliability level, i.e. the reliability index β, depends primarily on: 

• the construction costs Cstr, 
• failure costs (malfunctioning costs) Cf, 
• costs for improving structural safety C1. 

The obsolescence rate o and discount rate q and the time to failure n seem to be less significant 
than construction cost, malfunctioning cost and cost for improving structural safety. 
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