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Abstract. The solution of optimal control problems for mechanical systems is an important 

practical problem. For the solution of the optimization problem can be used the necessary 

conditions of the extremum in the form of the maximum principle of L.S. Pontryagin. 

However, the direct solution of the boundary value problem of maximum principle associated 

to large computational difficulties. This is due to the nonlinearity of the dynamic system of 

equations, the need for chose a reasonable first approximation for the conjugate variables at 

initial time moment, the need for a joint integrate of both the primary and the conjugate system 

with simultaneous selection of control function from the condition of maximum of the 

Hamiltonian. The latter circumstance often degrades (or breaks) the properties of continuous 

dependence of the residuals of the boundary value problem (usually, the values of the 

conjugate variables in a finite time moment) of variable parameters (typically, the values of the 

conjugate variables at initial time moment). The effective technology for the study of 

mechanical systems is developed in the article. The core technology is the integrated use of 

Direct Optimization Methods for dynamic systems (the method of successive linearization and 

its modifications); Methods of Solution of Boundary Value Problems (standard methods, based 

on the many times numerical solution of the system of algebraic equations that provide the 

required boundary conditions of the maximum principle); Qualitative Methods of study the 

structure of optimal control functions; Methods for constructing “exact” optimal control 

function, taking into account the features previously identified properties of the optimal control 

functions (methods of parametrization of the set of control function); Construction of Simple 

Techniques to calculate optimal motions of mechanical systems. The results of solution of the 

following tasks are presented:  the problem of optimal control the maximum of angle of 

rotation of the excavator - dragline on a fixed time interval with finite damping of the 

oscillations occurring bifilar suspended from the boom of the bucket; the problem of optimal 

control for movement of foot of the walking machine when it step over through the obstacle. 

1. Introduction 

It is known that the solution of the boundary value problem (BVP) of Maximum principle of L.S. 

Pontryagin often causes a rather large computational challenges [1-4]. This is due to the nonlinearity 

of the original system of equations;  to a reasonable chose the first approximation for adjacent 

variables in the initial time moment; the need for a joint integration of both the main and related 

systems with synchronous control function selection of the conditions of the maximum of the 

Hamiltonian. The latter circumstance often degrades (or breaks) the properties of continuous 

dependence of the residues of the boundary value problem (usually the values of the conjugate 

variables at the end of the time interval) from variable parameter (usually values of the conjugate 

variables at initial time moment). 

Therefore, a successful parametrization of the family of control functions, in the class of which the 

optimal control function is sought, which provides certain properties of smoothness, and aimed at 

improving the reliability of the solution of the BVP seems to be an important practical task. Successful 

parametrization makes it possible to construct continuous dependence residual dependences of the 

discrepancies on the variable parameters. Sometimes it is possible so to choose  the variable 

parameters and the corresponding discrepancies so that the need for a joint integration of the original 
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and the conjugate system is eliminated altogether. As a result, the volume of computations decreases 

and the convergence of the solution of the boundary value problem is accelerated. 

In accordance with the technology proposed in this paper, the choice of a specific set of variable 

parameters is performed on the basis of an analysis of the form of the approximate solution of the 

initial problem by means of direct methods. After choosing a set of variable parameters and their 

corresponding residuals and obtaining the solution of the Auxiliary Boundary Value Problem (ABVP), 

the conjugate variables for the original boundary value problem are reconstructed. And solution of 

BVP  is checked for the fulfillment of the necessary conditions for the extremum. The fulfillment of 

all the necessary conditions for the BVP testifies to the correctness of the results obtained. 

In a number of practical problems, the author succeeded in successfully implementing the 

parametrization of a set of control functions that ensures the continuity of residuals and the stability of 

solution of BVP [4]. We note that in the case of a small number of variable parameters, it becomes 

possible to construct simple methods for calculating the optimal control functions and the 

corresponding motions of the mechanical system under study. 

2. Methods 

The investigation of a mechanical system with the purpose of revealing its limiting possibilities begins 

with setting up a number of optimal control problems for different required values of integral and 

terminal functionals of the problem, including functionals that specify constraints on the current values 

of the phase coordinates. At the first stage, using the direct methods [2-4], we seek an approximate 

optimal control for this series of problems. At the second stage, we seek the qualitative structure of the 

optimal control law and the possibility of parametrization of a family of optimal control functions are 

investigated. At the third stage, we seek the possible variants of control parameterization are analyzed 

(for example, by means of relay functions with a predetermined number of switching operations or by 

means of relay functions combining with pieces of  touch with to phase constraints) for the purpose of 

their use in solving the BVP. 

3. The results of application of technology calculations  to solving the practical problems 

3.1. The problem of optimal control of the movement of the bucket of a dragline excavator  

Various formulations of this problem were investigated in [5-7]. 

3.1.1. Formulation of the problem. The motion of the model ”the arrow on the turntable platform and 

suspended bucket" (Fig. 2) is described under some  assumptions by the following system of 

differential equations [2]: 

 

,/// 2222 dtdlgdtd     MdtdJ 22

0 /                                     (1) 

 

where   - the angle of rotation of the platform of the excavator - dragline around the vertical axis,  - 

the bucket deviation angle from the plane of the boom, 0J - the moment of inertia of the system 

relative to the axis of rotation of the platform, M - the driving force moment of the platform turning 

relative to the stationary base of the excavator, l - conditional length of the suspension , g - 

acceleration of gravity, t - time of motion. 
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Fig. 1. Model ”the arrow on the turntable platform and suspended bucket ". 

 

The system of equations (1) is correct under the assumption that the mass of the ladle is negligibly 

small in comparison with the total mass of the boom and of the moving platform, the bucket cannot 

oscillate in the plane of the boom, the angle characterizing the deviation of the ladle from the plane of 

the boom is small [5,6 ]. 

As a control function, we choose )(tM  - the driving moment of the platform rotation relative to the 

fixed base. The length of the bucket suspension is assumed constant. 

We will consider the motion of the model "an arrow on a turntable platform and a bucket suspended 

from an arrow" on a fixed interval of time ],0[ Tt . Let the system in the initial time 0t  is in 

stationary state: 

 

                                         0)0(  ,  0)0(  , 0)0(  , 0)0(  .                                      (2) 

 

It is required to construct a control function  tM  restricted by magnitude 13M : 

 

                                                        13MtM   ,  Tt 0 ,                                                     (3) 

 

for transferring the system in a fixed time T from the stationary state (2) to the desired final stationary 

state: 

                                                    0T ,    0T ,    0T ,                                             (4)   

 

and providing the maximum deviation of the boom from the initial position: 

 

                                                                      maxT                                                              (5) 

 

At the same time, the maximum angular velocity of the boom rotation must not exceed a 

predetermined value 1C : 

                                                                     1max Ct
t




                                                            (6) 
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 3.1.2. Qualitative analysis of the structure of optimal control. The optimum control function can be 

either a relay control function that takes the maximum (minimum) possible values   13MtM   either 

  13MtM  , or a relay function conjugate with the driving segments over the phase constraints (6) 

at    0tM . 

Since the right-hand sides of the system of equations (1) are independent of  , and the initial and 

final conditions are symmetrical (the system from one state of rest is transferred to another state of rest 

with the invariable suspension length), the control function  tM  whose graph in the plane   tMt,  

is symmetric with respect to straight  2/Tt  . 

For case of constant control values:   13MtM  ,   13MtM  ,   0tM  the equations (1) can be 

integrated analytically. Phase portraits     tt  ,  and     tt  ,  are given in [5]. 

Depending on the specified final value of the driving time T for working cycles with a boom turn in 

the range 
 750  , the integral of the normalized optimal control function   0/ JtM  is: 

 

                                               dtJtMt

t


0

0/ ,   Tt 0 ,                                         (7) 

 

and it belongs to one of the set of functions shown in Fig. 2. 

 

 
Fig.2. To parametrization of a set of control functions. 

 

 

3.1.3. Algorithms for the method of parametrization of a set of control functions. The set of control 

functions shown in Fig. 2a is parametrized by one parameter 2t . As a residual we choose 

 Tz  . Then ABVP reduces to solving one nonlinear equation   0z . Moments of time 1t  and 

3t , uniquely determined from the restrictions on the time of motion T , the angular velocity of the turn 

of the platform and the symmetry conditions of the required control function. The constraints 

  0T  and   0T  will be satisfied automatically by virtue of symmetry [5, 6]. 

The set of control functions, shown in Fig. 2b, is parametrized by one parameter 3t . As a residual 

we choose  Tz  . Then ABVP reduces to solving one nonlinear equation   0z . Moments of 

time 1t  and 2t   uniquely determined from the restrictions on the time of motion T , the angular 

velocity of the turn of the platform and the symmetry conditions of the required control function. The 

constraints   0T  and   0T  will be performed automatically [5,6]. 

The cases of parametrization by two and three parameters are described in [5, 6]. 
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Calculations have shown that the control functions constructed in this way and the corresponding 

trajectories of (1) together with the reconstructed conjugate variables satisfy the necessary conditions 

for the extremum in the form of the maximum principle of  L.S. Pontryagin. 

 Note that the described algorithms, simultaneously, are the simple methods for calculating optimal 

trajectories and control functions. 

A qualitative analysis of the necessary conditions of extremum for problem (1) - (6) showed that they 

are equivalent to the corresponding conditions of extremum for the problem of the fastest moving of 

the excavator - dragline bucket to a given point with finite damping of  bucket oscillations [5]. 

 3.2. The problem of constructing the optimal foot motion  of the Walking Machine (WM)  

Some variety  problems of controlling the motion of WM and its individual parts were considered in 

[8-17]. 

3.2.1. Formulation of the problem. To describe the motion of the leg of the WM, we introduce the 

right coordinate system OXYZ with axes fixedly oriented in space. The OZ axis is directed vertically 

upwards, the axes OX and OY are in the horizontal plane. The leg of the WM consists of two links - 

the thigh and the shin. The thigh is connected to the body of the WM by means of a hinge with two 

degrees of freedom. The connection between the thigh and the shin is carried out by means of a hinge 

with one degree of freedom. The plane passing through the shin and thigh will be called the plane of 

the foot. As generalized coordinates, we choose the angles  3,2,1, ii  shown in Fig. 3. 

                                                               

               

                       

 

Fig. 3. Kinematics of the leg, an obstacle in the form of a circular half-cylinder, a technological 

restriction in the form of a circular cylinder. 

 

As control functions  3,2,1, iui  we choose the force moments in the hinges of the foot. The motion 

of the leg in the transfer phase is described by the following system of differential equations [11, 12]: 

 

         Tuuuxxfddxi ,,,,,...,/ 32161 , ii xddx  /3 , ,3,2,1i  10  ,                  (8) 

 

where  - the dimensionless time, T - the duration of the stepping cycle, 

 3,...,1,/,3  idtdaxx iiii   - the angular coordinates and the angular velocities of the leg 

links, respectively. 
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At the moment 0  of the beginning of the movement, the angular coordinates and velocities are 

determined by   6,...,1,0 0  ixx ii , and the velocity of the foot at the initial instant of time is 

directed vertically upwards [11,12]. 

The body of the WM performs rectilinear uniform motion with speed 0V . The contact of the foot with 

the supporting surface (reference plane) is considered point. In the future, the end of the foot will be 

called a foot. 

Let us list the restrictions on the phase-coordinates [11,12]. These restrictions are described using 

differentiable functional by sense of Gato [2]: 

A) During the movement of the foot, it could not fall below the reference plane; 

B) When moving a leg through an obstacle, the foot must not fall into the obstacle (an obstacle having 

the shape of a circular half cylinder, located perpendicular to the direction of movement of the WM 

(Fig. 3)); 

C) During the movement, the leg should not be "strongly compress”: (the foot should  not intersect the 

surface of the circular cylinder with the vertical axis passing through the point of the hanging of the 

leg (Fig.3).This limitation is related to the technological limitations of the design of the WM.) 

As a minimized functional, we choose the integral functional, which characterizes the energy costs 

arising from the use of electric drives for control in the hinges of the leg of the WM. 

 

                                                  min.

1

0

3

1

2

0  


dttuKTuF
i

i ,                                                (9) 

where K  is the coefficient. 

At the final moment of time T , the following conditions should be met (provide the driving the foot to 

a given point of the reference plane with a given vertical velocity): 

  

                                                     6,...,1,  ixTx iKi                                                          (10) 

3.2.2. Structure of the optimal control law. Fig. 4 shows the dependence of consumed energy of the 

time of foot transfer, corresponding to the optimal law of motion. 

 

 
 

Fig. 4. Dependence of consumed energy on the dimensionless duration of the stepper cycle  

 

The presence of a pronounced minimum agrees well with the results of [8-10]. Note that for 

sufficiently large values of motion time, the energy expenditure T  is close to linear, and for 0T  

the energy expenditure increases indefinitely. 
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Based on the results of calculations, the structure of the optimal law of movement of the leg of the 

WM is revealed. Let us describe its structure qualitatively. At the beginning of the stepper cycle, the 

foot breaks away from the reference point with a vertical speed. Further, the foot moves at a small 

height above the reference plane, while the length of the projection of the radius-vector of the foot 

onto the reference plane decreases. The leg is trying to creep up to the vertical. However, reaching the 

limit given by the circular cylinder with the vertical axis of the foot begins to move along the surface 

of the cylinder. At the same time, the plane of the foot turns. Next, the leg comes to restriction in the 

form of a half cylindrical pipe which lying across its path. Next, the foot move along the surface of the 

obstacle in the form of a half-cylindrical pipe which lying across its path. Further, the foot breaks 

away from its surface and continues to move along the surface of a circular cylinder with a vertical 

axis. Then the foot smoothly goes away from the boundary of the vertical cylinder, descends to a small 

height and moves approximately staying at this height. The length of the projection, the radius of the 

foot vector on the reference plane gradually increases. Finally, the foot drops vertically to the desired 

trace point. 

When solving the corresponding ABVP, the family of control functions was parametrized by the 

moments of entry into the phase constraints and the moments of leaving the indicated limitations. 

4. Discussion 

Despite the currently available software tools for modeling mechanical systems and software for 

researching high dimension systems [18, 19], the technology of studying controlled mechanical 

systems described in the article remains relevant, because the technology allows to consider a wide set 

of restrictions on the parameters of motion of mechanical systems. Such set of restrictions cannot be 

taken into account in the standard software for modeling and optimization. 

5. Orders 

The developed technology for constructing optimal motions of controllable mechanical systems was 

effectively used over a number of years to solve practical problems of optimal control of the 

trajectories of the spacecraft when entering the atmosphere [3,4]. The developed technology can be 

used for solving optimization problems in the field of construction and housing and communal sectors. 
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