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Abstract. The theory of plates and beams of asymmetric structure in thickness is constructed.
It is shown that, in general, the complete problem for this kind of a structure is not divided into
a plane problem and a bending problem. Here stress-strain state of plates and beams of
asymmetric structure in thickness is analyzed by the mathematical method without using any
simplifying assumptions. Simple theories were obtained for practical applications by an
asymptotic method. As examples, the dynamic problems for a two-layer beam and a plate with
a gradient of properties in thickness were calculated.

1. Introduction

Plates and beams are widely used in constructions. To ensure that they work reliably, they must be
calculated correctly. Often they have an asymmetrical structure in thickness. Such structures do not
have a middle plane, which is a plane of symmetry in terms of its geometric and physical parameters.
Examples of such constructions are asymmetric layered structures, structures with a gradient of
properties in thickness, and asymmetric constructions with variable thickness. It is known that the
complete problem for a symmetrical beam or plate is divided into two problems. They are a plane
problem and a bending problem. A different situation occurs for asymmetric plates and beams. In this
case the complete problem, generally speaking, is not broken up into a plane problem and a bending
problem. So the elasticity relations for forces and moments simultaneously contain both tangential and
flexural deformations. In addition, the inertia of rotation must be taken into account in the equations of
motion.

Many papers are devoted to arbitrary laminated thin-walled structures and structures with gradient of
properties in thickness [1], [2]. In most of them, either numerical methods or models based on some
hypotheses are used.

2. Formulation of the problem and initial equations
First we obtain two-dimensional (2D) equations for the plate. The cross-section of the plate related to
the Cartesian coordinate system is shown in figure 1.
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Figure 1. The cross section of the plate with gradient
physical properties

As the initial equations, we take the three-dimensional (3D) elasticity equations.
They are written as follows
Equations of motion

oo, N ooy N 00, o%u;  Ooy, N 00, N do, o%u,
X o Ox. X, P X, X, OX are

[ J

Strain-displacement formulas
ou; au; au, ou;  ou, ou,
eii:a_’ €= T ST t v CmT_
X; OX;  OX; OX;  OX; OX,
Hooke's law, recorded in a form convenient for the future, resolved relative to the main stresses
E 1+v
=o 8 Gz =——
2(1+v) E

are the components of the stress tensor, €, are the components of the strain tensor, E is

E 14
O-iizl — (eii+vejj)+ 1_VO'33 v Ojj O, Oy =Eey +v(oy +0y)

Here o,

the modulus of elasticity, v is the Poisson ratio.
As a result of the asymptotic analysis of 3D equations, which for displacements and deformations
coincides with that performed in [3], with an accuracy up to values of the order ¢

e=0@" +17"") (1)

(s 1s the variability of stress — strain state with respect to the coordinates X; and X,) we obtain the

following expansions for displacements and deformations with coordinate X,
Vi =U; (X3 =25), W=—Uz(X;=2,), U, =V, —Xg), €; =& + XK, €, =@+2X,T

e =20 w=%1 7‘2_@, Kiz_%, . n _9r @)
OX; oX, OX

Integrating the stresses to the coordinate X;, we obtain the forces and moments

zo+h zy+h zy+h zy+h zy+h
T, = _[aii dx;, S= jaldeS, N, =— Iai3dx3, H= J‘alzxgdx3, G =- jo-iixadx3 (3
Zy g 2y Zy Zp
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Then taking into account last formulas (2), (3) we obtain the following elasticity relations for forces
and moments

T, = Ashg, + A he; +Cuh’i; +CLh%k;, S =Ahw+2Ch*r 4)
G, =-Mh’x; —~M,h’k; —C h’e ~Cph%e;, H=2Mh’r+Ch’e

In the formulas (4) for the plate with the gradient of properties we introduce the notations

1 Zyo+h E 1 zo+h VE 1 zo+h E
=— dx,, == dx., A== dx 5
A =4 I 17 e P ;[1—1/2 : h J 2L+v) ©)
1 zo+h E 1 Zo+h E 1 zo+h VE
“ I 2(1+v)x3dX3’ Cﬂ:h_z I T2 %% C12:h_2 I Xl

1 zy+h E 2 1 Zg+h E , 1 Zg+h vE ,
M=—32_[ Jdxs, My== [0 My = | X

2(1+v) ton 2 l-v
For a laminated plate consisting of homogeneous layers, constants A ,..., M, can be written in the
form
1 Echy 1& v Ehy 1¢& Ehy
== A== CA=ZY (6)
A hkzlll—vkz he hkzzlll—vk2 hig 2(L+v,)
2 n 2 2 2
Z E (2 -2.") C. = 1 ZEK(Zk 4 ) ZVkE (2" -20)
= 2l+v,) T 2w E 11—y’ 1-v,°

E (Zk Zk—13) 1 &E (Zk3 _Zk—ls) v, Ey (Zk Zk—13)
S My, =
3h3 Z 11 Z 2 12 3h3 Z 1_Vk2

Here k is the number of the layer for which z, ;, <x; <z,, h, is the thickness of the k-th layer.
Integrating 3D equations of motion with respect to the coordinate X, with allowance for formulas (3),

we obtain the equations of motion of the plate

T, s 0%, %,

o 6x +X; =hpg, a2 —h*py —5- o2
6N, oN, 0w oG, oH ., o, , 0%,
+—=+Z=hpy—, N,=——+—+h —+*—h —t
x, | ox, PO 5 x ox, e T Pe Ty

Formulas (7) and (8) refer to plates with a gradient of properties along the thickness and arbitrary
laminated plates, respectively

Zo+h Zp+h Zo+h

1 1 1
Po) :F J.de3, Py =h_2 Ipxsdxsa P :F J.pX32dX3 (7

Zo Zo
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1 1 3
Po =72 P Py=572 0@~ 1)’ Py =g Zpk(zk 24)° (8)
hi= 2h" = 3h
Using the equations of consistency of deformations

2 2 2 2 2 2
8522 8821_6a)=0,81<22+61§1_28720
oX;  OX,  OX.0X, oX; OX, OX,0X,

strain - displacement formulas (2) and formulas
C,+2C=C,, M, +2M =M, A, +2A=A,
we write the equations of motion in the following form

o¢, 0O¢; ow 0 oV, 0%y, 0%V,
&-’_Athgj-'_Aha_-'_Cllhza_(Ki+Kj)+xi:hp(O) 2

Ayh =2 "NV Pw 7 Az
: : X X, ot? ot? ot?

o°w 0% [ov, ov 0% (oy, oy
—~M,h®A(k, + x,) - C,h?A(g, + €,)+ Z =hp,y — —h?p, —| —+—2 |+ hPp, —| 2 +L2
1 (%, 2) 1 (& 2) L) ot Py Pe [5X1 6sz P 8’[2[ T,

o*w 0% (ov, ov, o° (o 0
—MllhsA(Kl+K2)—C11h2A(81+.92)+Z=hp(o)?—h2p(l)¥( + j+h3p2)8t ( 7/1+LJ

0%, 0%, 0%,  OX,
_o L0
oxZ  ox?
Weset C, =0
1%" E 1 &E @' -2.)
Cump [ T 06 =0 Cumge 2y =0 ®

From the equation (9) we find z,. The plane X, =0 in this coordinate system will be called the neutral

plane. In the theory of plates with a gradient of properties, it plays the same role as the middle plane
for isotropic plates. The formula (9) for two-layered structure was first obtained in [4].

We rewrite the equations of motion and the elasticity relations of the plate, putting C,, =0 in them
o*w o (ov, ov, o* (oy, oy
3 2 3
_Mllh A(K1+K'2)+Z hp(O) atz —h p(l) at (ax +8X2)+h p(2)¥(§i+a—xj (10)

G, =-M,h’c; —M,h’k; —C,h’e;, H=2Mh*c+Ch’w e =0(7" +1n")

Og; ¢ o%v, 0%y,
Auh =t Agh—* +Ah—+X =hpo = ~h*py —5 el (11)

i i j

T, =A he + Alzhgj +Clzh21(j, S = Ahw + 2Ch?r

3. Asymptotic analysis of 2D equations
For asymptotic analysis, we turn to dimensionless variables and dimensionless unknown quantities.
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As is customary in asymptotic methods, we will perform an asymptotic scale extension with respect to
the variable X; .

We denote the variability of the stress-strain state with respect to the coordinates by s

o .10
x| Rog

(12)

Suppose that, as in the case of homogeneous plates, the complete problem is conditionally divided into
two problems — the problems of quasi transverse vibrations and the quasi tangential vibrations.

3.1. Quasi transverse vibrations
We assume that the vibrations are caused by the uniform normal load Z . Suppose that the deflection is
much greater than the tangential displacements w >> v, .

For the unknown quantities we take the following asymptotic representation:

w 0 -2s -2s -s hR4pO o 2-4s 0
—=nW.,, Rk, = K., Rt= Te, Vi = s - = - 13
== n n vi=n"y M_h? ot n g (13)
R T
G| - — 7ZSGi*, HIQ3 :n—ZSH*, i =f71725 . SR _ 17258*
M, h M, h A;h A h
here
2
g oW Ore O OW
o¢; 05, 08 0¢;
M C
G =Ky — 12 Ko, H*:mr*, Ti*:i’(j*’ S*:Ea)*
Mll Mll All All

In the formulas (13) all quantities with asterisks are dimensionless and of one asymptotic order. We
substitute the asymptotic representation of the unknown quantities into equations (10) and perform
scale extension (12). As a result we obtain equations with respect to dimensionless unknown
quantities, in which the order of each term of the equation is specified. Discarding small terms with
the assumed accuracy (1), we obtain the following system of equations:

2,0,(b) 2 ) )
3 (b) (b) oW ) o0° [ ov oV
— Mllh A(Kl + K, ) +7Z = hp(O) ? — h p(l) ?[ax—ll + 6)2(2 (14)

G,” =-M h°x® =M 0k, H® =2Mh*z®

20 (b) () b
w_0°w® a0y, w_ ow®

=== Loz Zr2
OX:

‘ ox? X, X,

Ti(b) =C12h2K'j(b), S(b) =2Ch2T(b) (15)

The upper indices (b) and (t) indicate the quantities of the quasi transverse and the quasi tangential

vibrations problems, respectively.
Equations (14) are equations of quasi transverse vibrations, but the problem can not be considered

purely bending, since the tangential forces Ti(b) and S® are not equal to zero. In addition, the
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equation of motion of a quasi tangential problem contains a term that takes into account the inertia of
2, (b)

atZ

The sequence of the solution of this problem is as follows: first we solve the bending problem (14),

neglecting the term, enclosed in square brackets, then with the help of arithmetic operations we find
52, ®

the forces (15) and the inertia of rotation h? P % .At the second stage we solve the quasi

rotation h*p,,

tangential problem with taking into account the quantities found in solving the quasi transverse
problem.

3.2. Quasi tangential vibrations
We assume that the vibrations are caused by the uniform tangential load X;. We consider that the

tangential displacements are much greater than the deflectionsv, >>w.
For the unknown quantities we take the following asymptotic representation:

Vi 0 -s -s Ti - S -S

o =N Vi & =06, 0=0 0., =1 T., ——=1"3.

R Ay Ay

Rz'0(0) i _ 28 az Gi R :n—l—sG_ HR :n—l—sH
A11 ot at*z Mnh3 I Muh3

Taking into account the asymptotics, we obtain the following equations

og" d¢;" dw" 0%y, 0%y,
AN+ A AN X = - th(”at_z (16)
i i j
® ® ®
g0 N o Mol N0 _p ey Aghe ¥, SO = Ahe®
OX; 0%, oX,
G =-C,h’¥, HY =Cn’0® (17)

As in the case of quasi transverse vibrations, quasi tangential vibrations are related by quasi transverse

a?l ox,  ox,

Moments (17) and inertia of rotation are calculated by arithmetic operations after solving the problem
for quasi tangential vibrations.

We will solve the complete problem in two stages.

At the first stage we solve the problem (16), (17), discarding in the equations of motion the terms in
square brackets.

At the second stage, in the problem for quasi transverse vibrations, we take into account the forces

2 oV (t) ov (t)
vibrations through the moments (17) and the inertia of rotation h’ Pu 0 ( Lz |

62 oV (t) ov ®

(15) and the inertia of rotation h? Py =7 L+ 2 |obtained in the problem for quasi tangential
ot ox OX,

vibrations.

4. Beams
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The theory of beams is a special case of the plate theory. The similar results for smart structures were
received in [5].
We write the systems of equations for quasi tangential vibrations

® 2,0 2,,0) ®
Alhagx +X:hp(0)aLz_{ i (1)—661/2 } 5(0:_8:;)( , T =Ahg® (18)

and for quasi transverse vibrations

02 o>w® {2 02 a\/(t’}

_MhsaX_ZK(b) +7Z th(o)?— (19)

2w aw®
w7 ox

G® = _Mh3x® £® =

The physical constants for a beam with a gradient of properties and for an arbitrary laminated beam
are determined by the formulas (20) and (21) respectively

1 Zg+h 1 zy+h 1 zy+h 1 zy+h
A:ﬁ jE dx;, M =h_3 J.EXSZ dX;, P h Ipdxal P :h_z IPX3 dx, (20)
18 1 n 3 3 18 1 n 5
A:_ZEkhk’ M :_32Ek(zk ~Z,4), P(O)Z_Z Ay p(l)z_zzpk(zk_zk—l) (21)
h k=1 3h k=1 h k=1 2h k=1
The position of the neutral axis is found from the equations
n Zg+h
> E @’ -2, =0, IEX3dX3 =0 (22)
k=1

Zp

In statics the complete problem for a beam is exactly divided into a plane problem and a bending
problem.

In the dynamics, the partition is conditional: quasi transverse (quasi tangential) vibrations generate
quasi tangential (quasi transverse) vibrations. The relationship between both kinds of vibrations is
realized through the inertia of rotation. Especially dangerous are vibrations with frequencies close to
their natural frequencies. In this case, as you approach any natural vibration frequency, all forces,
moments, deformations, and displacements increase indefinitely.

5. Numerical examples

5.1. Problem 1

Consider a two-layer beam. The beam with rigidly clamped edges makes vibrations under the action of
a uniform tangential load X .The length of the beam is equal to /, the thickness is /, the layer with the
number 1 is three times thinner than the layer with the number 2 (3h, =h,). The elasticity modules of

the layers and the density of their materials are related by the following relationships
E,=3E,, p1=2p,

We introduce dimensionless variables &, ¢ and dimensionless displacements V., W, and some constants
by formulas

X, =1&, x;=hg, v.l=v, w.l=w, AE,=A

Let us find the position of the neutral axis of the beam
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7, EPRP+E®(h*-h}) _ 0375
o= T ) @ -
h 2(E®h, + E@h,)h

2 2
A:lz:Ekhk =0.75E,, M =%2Ek (st _Zk713)20-133E2
h k=1 3h k=1

2 2 2 2
h 2h I
First we solve problem (18), for which the resolving equation has the form
2y, 2 «
d_\2+liv*+x*:01 X*ZLI, li:po ,V*:COS/LL?_X_Z
d& Ah A cosd, A
o* av®

Then calculate the inertia of rotation h® Py —7 —— and solve the problem (19). The resolving
ot® ox
equation of this problem in the dimensionless form is written as follows

d* w, dv,
=AW + P22 =0, A,

_ Al? 2.2 2 Ap(l)l 2.2
dé dé Mh?

Mp g h !

The distribution of dimensionless displacement V. at dimensionless frequency A=2 along the beam is
shown in figure 2 ( X.=1). The calculation shows that under the action of only a tangential load,
bending vibrations appeared in the beams.

0 g
0 02 04,06 9 :
1
V*
2
3
_——/
4

Figure 2. The distribution of dimensionless
displacements V., W, along the beam

5.2. Problem 2

We consider axisymmetric forced harmonic vibrations of a circular plate with rigidly clamped edge
r = R under the action of a uniform normal load Z. Let the properties of the material of the plate vary
in thickness according to a linear law

E=(1+¢,—¢)E; +(c—6o)E;, v=([0+¢c, =)V, +(c—6o)vy, ch=X,

Here E; and v, (E, and v,) are the values of the modulus of elasticity and the Poisson's ratio on the

lower face (the upper face) of the plate.
We take the following values for calculation:

E,/E, =3, v,=03, v, =035 E/E, =E.
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The first we find the position of neutral plane of the plate by solving equation (9) with respect to ¢,

o+l [A+g, —¢)E,/E, + (s —5,)]
o 1-[+6, —6vo + (s —goIvil

>cdg=0

Solving the equation for ¢,, we obtain ¢, =-0.419.
We calculate only those constants (5), which are required in solving this problem

M M
E11 —0.1715 E_12:0_7165, &=0.0088

1 1 1

Here and below, we can take into account that the needed quantities vary as exp(—iat), (@ is the

circular frequency of vibrations) and write all the equations for the amplitude value only.
The equations for the bending problem in the polar coordinates have the form

d> 1d

+ —_

dr> rdr

~M,h*A(x, + K,)+Z +a)2hp(0)W=O, A=

dw d?w 1dw
— — K =——

=— K. =—,
e T e ST dr

G, =-M,h’x, —-M,h’«

@

G, =-M,h’x, -M,h’k,, T, =C,x,, T,=Cy,x,

We now turn to dimensionless unknown quantities and dimensionless coordinates

2
7r*:d&’ Kr*:d—V\zl*’ K(p*:ld&’ Gr*z_Kr*_M12 K',/,*, G(p*:_K«J*_ = K
dé dé ¢ dé My My,
G __ & G, = G, T _Ce Koy T _ e K
' I\/Illh3 ! '\/Illh3 ' Mll ’ ! I\/Ill '
r=R¢&, Z LR . _ORpy w, =Y
’ M, M,h* R

Then we write the resulting equation in the form

(dz +11j(dzw*+1dw*j—z*—ﬂﬁw*=0
dg* £dsfdg® & dg

The general solution of the resulting equation has the form

Z,
/12
where J,(A&) is the Bessel function of the first kind and the zeroth order and 1,(A&) is the modified

Bessel function of the zeroth order.
We find the integration constants from the conditions at the edge r =R (£ =1)

W, =, (AE) + ¢, 1 (AE) -

Z. dw, Z.
W, :Cl‘]o(/ﬁt)‘kczlo(ﬂ)_?zoa —— = A=, 3, (1) + ¢, 1, (1) - =

0
dé 2
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Z. Z.
6 =5 i) € =223, 6=3, (DL +3,(D)1e(A)

From the equation & =0 we find the first four natural dimensionless frequencies: 3.20, 6.36, 9.44 and
12.58.

Using received formulas, we calculate the bending moment and the tangential force. Imagine the
results of the account in the form of graphs. The change in the moment G,. and the force T,. along the
radius of the plate is shown in figures 3 and 4 respectively. Calculation is performed for
frequencies A =3 (the dashed line), 4=3.1 (the thin line), and A =3.15 (the thick line) (Z.=1).

0 02 0.4 06 08 1 200
0 = & T
IS ey 100
25 +— = _/ T
-50 T S 0 N \é:
— 02 0i4 0l6 08 - 1
-75 T
-100
-100 G*
T+ / -200
-125
Figure 3. The change in the force T,. along Figure 4. The change in the moment G,. along
the radius of the plate the radius of the plate

6. Conclusions

We have established the following:

For the thin-walled structures under consideration with asymmetric properties of the material over the
thickness, the complete problem in general is not divided into a plane problem and a bending problem.
This connectedness of quasi transverse and quasi tangential vibrations leads to an unlimited growth of
all unknown quantities (forces, moments, stresses, deformations, displacements) when the frequency
of vibrations approaches any natural vibrations frequency. A simple method for calculating the stress-
strain state of plates and beams of an asymmetric structure is developed. This method can be used to
determine complex material properties.
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