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Abstract. The theory of plates and beams of asymmetric structure in thickness is constructed. 

It is shown that, in general, the complete problem for this kind of a structure is not divided into 

a plane problem and a bending problem. Here stress-strain state of plates and beams of 

asymmetric structure in thickness is analyzed by the mathematical method without using any 

simplifying assumptions. Simple theories were obtained for practical applications by an 

asymptotic method. As examples, the dynamic problems for a two-layer beam and a plate with 

a gradient of properties in thickness were calculated. 

1. Introduction 

Plates and beams are widely used in constructions. To ensure that they work reliably, they must be 

calculated correctly. Often they have an asymmetrical structure in thickness. Such structures do not 

have a middle plane, which is a plane of symmetry in terms of its geometric and physical parameters. 

Examples of such constructions are asymmetric layered structures, structures with a gradient of 

properties in thickness, and asymmetric constructions with variable thickness. It is known that the 

complete problem for a symmetrical beam or plate is divided into two problems. They are a plane 

problem and a bending problem. A different situation occurs for asymmetric plates and beams. In this 

case the complete problem, generally speaking, is not broken up into a plane problem and a bending 

problem. So the elasticity relations for forces and moments simultaneously contain both tangential and 

flexural deformations. In addition, the inertia of rotation must be taken into account in the equations of 

motion. 

Many papers are devoted to arbitrary laminated thin-walled structures and structures with gradient of 

properties in thickness [1], [2]. In most of them, either numerical methods or models based on some 

hypotheses are used. 

2. Formulation of the problem and initial equations 

First we obtain two-dimensional (2D) equations for the plate. The cross-section of the plate related to 

the Cartesian coordinate system is shown in figure 1.  
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Figure 1. The cross section of the plate with gradient  

physical properties 

 

As the initial equations, we take the three-dimensional (3D) elasticity equations. 

They are written as follows 

Equations of motion 
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Strain-displacement formulas 
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Hooke's law, recorded in a form convenient for the future, resolved relative to the main stresses 
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Here nm  are the components of the stress tensor, nme  are the components of the strain tensor, E  is 

the modulus of elasticity,   is the Poisson ratio. 

As a result of the asymptotic analysis of 3D equations, which for displacements and deformations 

coincides with that performed in [3], with an accuracy up to values of the order    

 )( 221 sO    (1) 

(s is the variability of stress  strain state with respect to the coordinates 1x  and 2x ) we obtain the 

following expansions for displacements and deformations with coordinate 3x  
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Integrating the stresses to the coordinate 3x , we obtain the forces and moments  
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Then taking into account last formulas (2), (3) we obtain the following elasticity relations for forces 

and moments 
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In the formulas (4) for the plate with the gradient of properties we introduce the notations 
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For a laminated plate consisting of homogeneous layers, constants 11A ,…, 12M  can be written in the 

form 
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Here k is the number of the layer for which kk zxz  31 , kh  is the thickness of the k-th layer. 

Integrating 3D equations of motion with respect to the coordinate 3x  with allowance for formulas (3), 

we obtain the equations of motion of the plate 
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Formulas (7) and (8) refer to plates with a gradient of properties along the thickness and arbitrary 

laminated plates, respectively 
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Using the equations of consistency of deformations 
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strain - displacement formulas (2) and formulas 
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we write the equations of motion in the following form 
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From the equation (9) we find 0z . The plane 03 x  in this coordinate system will be called the neutral 

plane. In the theory of plates with a gradient of properties, it plays the same role as the middle plane 

for isotropic plates. The formula (9) for two-layered structure was first obtained in [4]. 

We rewrite the equations of motion and the elasticity relations of the plate, putting 011 C  in them 
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3. Asymptotic analysis of 2D equations 

For asymptotic analysis, we turn to dimensionless variables and dimensionless unknown quantities. 
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In the formulas (13) all quantities with asterisks are dimensionless and of one asymptotic order. We 

substitute the asymptotic representation of the unknown quantities into equations (10) and perform 

scale extension (12). As a result we obtain equations with respect to dimensionless unknown 

quantities, in which the order of each term of the equation is specified. Discarding small terms with 

the assumed accuracy (1), we obtain the following system of equations: 
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The upper indices )(b  and )(t indicate the quantities of the quasi transverse and the quasi tangential 

vibrations problems, respectively. 

Equations (14) are equations of quasi transverse vibrations, but the problem can not be considered 

purely bending, since the tangential forces 
)(b

iT  and )(bS  are not equal to zero. In addition, the 
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equation of motion of a quasi tangential problem contains a term that takes into account the inertia of 

rotation 
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problem. 

3.2. Quasi tangential vibrations 

We assume that the vibrations are caused by the uniform tangential load iX . We consider that the 

tangential displacements are much greater than the deflections wvi  . 

For the unknown quantities we take the following asymptotic representation: 
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Taking into account the asymptotics, we obtain the following equations 
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As in the case of quasi transverse vibrations, quasi tangential vibrations are related by quasi transverse 

vibrations through the moments (17) and the inertia of rotation 




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t
h

tt )()(

)( . 

Moments (17) and inertia of rotation are calculated by arithmetic operations after solving the problem 

for quasi tangential vibrations. 

We will solve the complete problem in two stages. 

At the first stage we solve the problem (16), (17), discarding in the equations of motion the terms in 

square brackets. 

At the second stage, in the problem for quasi transverse vibrations, we take into account the forces 

(15) and the inertia of rotation 









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
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
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v
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h

tt

 obtained in the problem for quasi tangential 

vibrations. 

4. Beams 
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The theory of beams is a special case of the plate theory. The similar results for smart structures were 

received in [5]. 

We write the systems of equations for quasi tangential vibrations 
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and for quasi transverse vibrations  
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The physical constants for a beam with a gradient of properties and for an arbitrary laminated beam 

are determined by the formulas (20) and (21) respectively 
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The position of the neutral axis is found from the equations  

 00 33
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2
0

0

 
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 xxEzzE

hz
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In statics the complete problem for a beam is exactly divided into a plane problem and a bending 

problem. 

In the dynamics, the partition is conditional: quasi transverse (quasi tangential) vibrations generate 

quasi tangential (quasi transverse) vibrations. The relationship between both kinds of vibrations is 

realized through the inertia of rotation. Especially dangerous are vibrations with frequencies close to 

their natural frequencies. In this case, as you approach any natural vibration frequency, all forces, 

moments, deformations, and displacements increase indefinitely. 

5. Numerical examples 

5.1. Problem 1 

Consider a two-layer beam. The beam with rigidly clamped edges makes vibrations under the action of 

a uniform tangential load X  .The length of the beam is equal to l, the thickness is h, the layer with the 

number 1 is three times thinner than the layer with the number 2 ( 213 hh  ). The elasticity modules of 

the layers and the density of their materials are related by the following relationships 

 2121 23   ,EE   

We introduce dimensionless variables  , and dimensionless displacements ** ,wv  and some constants 

by formulas 

 AEAwlwvlvhxlx  231 *** ,,,,    

Let us find the position of the neutral axis of the beam 
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First we solve problem (18), for which the resolving equation has the form 
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Then calculate the inertia of rotation 
x

v
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2  and solve the problem (19). The resolving 

equation of this problem in the dimensionless form is written as follows 
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The distribution of dimensionless displacement *v  at dimensionless frequency  =2 along the beam is 

shown in figure 2 ( *X =1). The calculation shows that under the action of only a tangential load, 

bending vibrations appeared in the beams. 

 

 
Figure 2. The distribution of dimensionless  

displacements *v , *w  along the beam 

5.2. Problem 2 

We consider axisymmetric forced harmonic vibrations of a circular plate with rigidly clamped edge 

Rr   under the action of a uniform normal load Z. Let the properties of the material of the plate vary 

in thickness according to a linear law 

 310001000 11 xhEEE   ,)()(,)()(   

Here 0E  and 0  ( 1E  and 1 ) are the values of the modulus of elasticity and the Poisson's ratio on the 

lower face (the upper face) of the plate. 

We take the following values for calculation: 

 */,.,.,/ EEEEE  11010 350303    
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The first we find the position of neutral plane of the plate by solving equation (9) with respect to 0  
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Solving the equation for 0 , we obtain 419.00  . 

We calculate only those constants (5), which are required in solving this problem 
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Here and below, we can take into account that the needed quantities vary as )iexp( t , (  is the 

circular frequency of vibrations) and write all the equations for the amplitude value only. 

The equations for the bending problem in the polar coordinates have the form 
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We now turn to dimensionless unknown quantities and dimensionless coordinates 
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Then we write the resulting equation in the form 
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The general solution of the resulting equation has the form 
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where )(0J  is the Bessel function of the first kind and the zeroth order and )(0 I  is the modified 

Bessel function of the zeroth order. 

We find the integration constants from the conditions at the edge Rr  ( 1 ) 
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From the equation 0  we find the first four natural dimensionless frequencies: 3.20, 6.36, 9.44 and 

12.58. 

Using received formulas, we calculate the bending moment and the tangential force. Imagine the 

results of the account in the form of graphs. The change in the moment *rG  and the force *rT  along the 

radius of the plate is shown in figures 3 and 4 respectively. Calculation is performed for 

frequencies =3 (the dashed line),  =3.1 (the thin line), and  =3.15 (the thick line) ( *Z =1). 

 

  

Figure 3. The change in the force *rT  along  

the radius of the plate  

Figure 4. The change in the moment *rG  along 

the radius of the plate 

6. Conclusions 

We have established the following: 

For the thin-walled structures under consideration with asymmetric properties of the material over the 

thickness, the complete problem in general is not divided into a plane problem and a bending problem. 

This connectedness of quasi transverse and quasi tangential vibrations leads to an unlimited growth of 

all unknown quantities (forces, moments, stresses, deformations, displacements) when the frequency 

of vibrations approaches any natural vibrations frequency. A simple method for calculating the stress-

strain state of plates and beams of an asymmetric structure is developed. This method can be used to 

determine complex material properties. 
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