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Abstract. Spatial bar structures consist of a large number of individual elements. During the 

assembly process these bars are consecutively connected to each other through structural joints. 

The actual dimensions of the bars differ from the nominal values and vary from one bar to 

another due to random inaccuracies in their manufacturing. These inaccuracies are regulated by 

a special system of tolerances, but, anyway, their accumulation during assembly leads to errors 

in the geometric shape of the bar structure. The errors that arise in the spatial bar structures 

make it difficult to connect the elements among themselves, and reduce the load-carrying 

capacity of structures due to the appearance of additional internal forces. Therefore, studies of 

possible errors in spatial bar structures help to improve their reliability.  

Studies of possible errors are performed on a computer by simulating the assembly of spatial 

bar structures using the Monte Carlo method. This method requires the introduction of random 

variability in the lengths of the bars when assembled into a single spatial structure. In addition, 

it involves statistical analysis of the results obtained, which is why it is called the statistical 

computer simulation method. The reliability of computer simulation of the actual shape of the 

spatial bar structures can be achieved only in the case of using normally distributed random 

deviations in bar lengths.  

To obtain normally distributed random deviations in bar lengths, special algorithmic 

calculators for uniformly distributed random numbers in the interval from 0 to 1 are used. One 

of these algorithms is investigated in this paper. It should be noted, that the numbers obtained 

by these algorithms are not strictly random, and therefore they are called pseudorandom. 

However, their sequence has the properties of randomly obtained numbers. The author also 

recommends an algorithm for obtaining normally distributed pseudo-random numbers from 

uniformly distributed pseudo-random numbers. 

The process of statistical computer simulation of actual geometric shapes of spatial bar 

structures requires the use of a very large number of pseudo-random numbers, since multiple 

numerical simulation of structures is being performed. Consequently, the random nature of the 

pseudo-random numbers used in the simulation must be flawless. To achieve reliable results of 

computer simulation of the actual geometric shape of spatial bar structures, the author 

recommends algorithms for obtaining pseudo-random numbers both uniformly distributed from 

0 to 1, and normally distributed with statistical mean 0   and standard deviation 1  . In 

order to confirm the quality of the pseudo-random numbers obtained by this algorithm, their 

sequence was subjected to statistical testing at different regions. 

From different regions of the large sequence of pseudo-random numbers samples were formed 

with the aid of the author's computer program, which were then subjected to statistical testing. 

Based on the test results, histograms of the distribution were plotted, according to which the 

chi-square criterion was determined. The results of testing allow us to conclude that the 

presented algorithms for obtaining pseudo-random numbers can be recommended for computer 
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simulation of actual geometric shapes of spatial bar structures. With the aid of these 

algorithms, reliable results of such studies can be obtained. 

 

1. Introduction 

Spatial bar structures consist of a large number of individual elements. During the assembly process 

these bars are consecutively connected to each other through structural joints. As a result of this 

process, structures of different geometric patterns and spatial shapes are formed. For example, metal 

domes of a spherical shape can differ from each other by geometrical schemes of construction of their 

frameworks. Figure 1 shows framework schemes of a star grid dome (a) and a sectoral grid dome (b). 

The number of bars in the star dome is 568, and the number of bars in the sectoral dome is 800. 

The actual dimensions of the bars differ from the nominal values and vary from one bar to another 

due to random inaccuracies in their manufacturing. Inaccuracies in the dimensions of bars are 

regulated by a special system of tolerances [1], but, although the tolerances are satisfied, the 

accumulation of errors during the assembly leads to errors in the geometric scheme of the bar 

structure. The errors that arise during the assembly of the spatial bar structures make it difficult to 

connect the elements among themselves, and reduce the load-carrying capacity of structures due to the 

appearance of additional internal forces. In addition, the design geometric shape of the structure as a 

whole is distorted. This leads to various defects in the construction of the enclosing structures. 

Therefore, studies of possible errors in spatial bar structures help to improve their reliability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studies of possible errors are performed on a computer by simulating the assembly of spatial bar 

structures using the Monte Carlo method [2]. This method requires the introduction of random 

variability in the lengths of the bars when assembled into a single spatial structure [3]. The actual bar 

size 
iL  will differ from the nominal size   iL  by the amount of random deviation ( )iL   [4] 

* ( )i i iL L L    .     (1) 

In addition, the Monte Carlo method involves statistical analysis of the results obtained, which is 

why it is called the statistical computer simulation method. This requires a multiple imitation of the 

process under investigation, including modeling of all the factors affecting it. The deviation in bar 

lengths is a summation of a large number of mutually independent random errors, and therefore, 

according to the central limit theorem of probability theory (Lyapunov's theorem), the distribution of 

Figure 1. The schemes of the frameworks of the star grid dome (a) and the sectoral grid dome (b). 
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deviations approximates to the normal law [5]. Therefore, the reliability of computer simulation of the 

actual shape of the spatial bar structures can be achieved only in the case of using normally distributed 

random deviations in bar lengths.  

An important part of the numerical simulation of the assembly of spatial bar structures using the 

Monte Carlo method is the simulation of random variables with a normal distribution law. In addition, 

the system of tolerances for the dimensions of building structures used in construction is based on their 

normal distribution. At that, the deviation corresponding to 3 is taken as permissible deviation of a 

dimension [1]. This is achieved by modeling random variables distributed uniformly between zero and 

one, and then converting them to normal random variables using specially chosen formulas or 

algorithms. The numbers obtained in this way are called pseudorandom, and the algorithms that 

generate them are called pseudorandom number generators. One of these algorithms is investigated in 

this paper. It should be noted, that the numbers obtained by these algorithms are not strictly random, 

and therefore they are called pseudorandom. However, their sequence has the properties of randomly 

obtained numbers.  

The process of statistical computer simulation of actual geometric shapes of spatial bar structures 

requires the use of a very large number of pseudo-random numbers, since multiple numerical 

simulation of structures is being performed. For a relatively accurate estimate of the errors in the 

actual shape of the bar spatial structures, at least five hundred numerical simulations should be 

performed [6]. In addition, to calculate one normally distributed pseudo-random number, twelve 

equally distributed numbers are used. For example, a study of possible errors in the assembly of dome 

frames, shown in Figure 1, will require the use of more than 3.4 million uniformly distributed pseudo-

random numbers in the interval from 0 to 1 for the star grid dome and more than 4.8 million for the 

sectoral grid dome. And in more complex bar structural systems, the required number of such pseudo-

random numbers exceeds 10 million. Consequently, the random nature of the pseudo-random numbers 

used in the simulation must be flawless.  

 

2. Methodology 

The author developed computer programs designed for the numerical analysis of the possible errors of 

the assembly of the bar frameworks of large-span metal domes by the Monte Carlo method. Pseudo-

random numbers in these programs are generated based on a first-order recurrence formula 

 1j jf   .      (2) 

where 0   is the given initial value. 

To obtain uniformly distributed pseudo-random numbers from 0 to 1, it is recommended to use a 

simple analytical dependence [7]: 

1  D 997 i i   ,          (3) 

where:      D  – the function of discarding of the whole part of the product, 

0  =  0.5284163517. 

In the programming language C, this algorithm looks like: 

 

double t,tx,ty,con; 

t=5.284163517e-01;  

con=997; 

. . . 

{tx=t*con;  ty=floor(tx);  t=tx–ty;} 
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In order to determine the quality of a sequence of uniformly distributed pseudorandom numbers, 

studies were carried out on the uniformity of filling with "random" points of a square and a cube. 

Using twos or triples of successive pseudorandom numbers as coordinates, we get a set of points 

located, respectively, inside a square or a cube with sides equal to one. The essence of such a 

calculation is to determine the ratio of the number of pseudo-random points that fall within a given 

region to their total number. The given area is a quarter-circle inscribed in a square or an eighth part of 

a sphere inscribed in a cube. At this, the radii of the circle and the sphere are equal to one.  

From mathematics it is known that the area of the circle and the volume of the sphere, respectively, 

are equal to: 

21

4
r , 

31 4

8 3

r .     (4) 

In this case, the ratio of the areas of a quarter of a circle with the radius 1r   and a square with the 

side 1 is equal to 4 ; and the ratio of the volumes of an eighth part of a sphere with the radius 1r   

and a cube with the side 1 is equal to 6 . Therefore, to calculate a number by the Monte Carlo 

method, one can write, respectively, for twos and for triples of uniformly distributed numbers of a 

pseudo-random sequence. 

* '
4

k

k
  , * '

6
k

k
  .     (5) 

where k   –  total number of points; 

  'k  –  total number of points in the given area. 

 

Fig. 2 and Fig. 3 show a graphic representation of the "approach" of the obtained values of the 

number 
*  to its theoretical value   with an increase in the number of used twos or triples of pseudo-

random numbers. It has to be noted that the number of twos k  is twice less than the volume of the 

sample n  of uniformly distributed pseudo-random numbers    i , and the number of triples k  is 

three times less than the volume of the sample n . It can be seen from the figures that with the increase 

in the sample size, the accuracy of calculation is clearly increasing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Accuracy of calculation of   

using twos of pseudorandom numbers    i  

Figure 3. Accuracy of calculation of   

using triples of pseudorandom numbers    i  
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The following formula is used [2, 3] to obtain from uniformly distributed pseudo-random numbers 

   i  normally distributed pseudo-random numbers   j  with mathematical expectation 0   and 

standard deviation 1  : 

1

12 1

2

n

j i
in

 


 
   

 
  .     (6) 

In this case, the number of uniformly distributed numbers    i  can be limited to 12 (n = 12), 

which is quite sufficient for practical tasks. Therefore, the author also recommends an algorithm for 

obtaining normally distributed pseudo-random numbers from uniformly distributed pseudo-random 

numbers. In the programming language C, the function norm( ) is written to obtain normally 

distributed pseudo-random numbers: 

 

double sm,t,tx,ty,con;  int k; 

t=5.284163517e-01;  

con=997; 

. . . 

norm( ); 

. . . 

void norm( )  

{ 

sm=0; 

for (k=1; k<=12; k++) 

{ 

tx=t*con;   ty=floor(tx);   t=tx–ty;  

sm=sm+t; 

} 

sm=sm–6; 

return; 

} 

 

Obviously, the pseudo-random numbers obtained in this case are not actually random. The 

properties of the aggregate of the actual random numbers are judged from the results of statistical 

checks that are performed with special techniques [8 – 11].  To achieve reliable results of computer 

simulation of the actual geometric shape of spatial bar structures, pseudo-random numbers must be the 

same as random ones.  

In order to confirm the quality of the pseudo-random numbers obtained by this algorithm, their 

sequence was subjected to statistical testing [12 – 15] at different regions. Using the computer 

program specially developed by the author, from different regions of the large sequence of pseudo-

random numbers samples were formed, which were then subjected to statistical testing. During the 

testing, the histograms of the distribution of numbers   j  were constructed and compared with the 

density of the normal distribution with 0   and 1   which is described with the formula 

2( )

221
( ) e

2

x

f x





 




  .     (7) 

The comparison was carried out according to the chi-square criterion [8, 12] with a division of the 

interval from –4 to + 4 into 16 classes, the standard deviation , and the mathematical expectation 
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. In this case, the number of actually used classes in the calculation of the chi-square criterion ( 2 ) 

was 12, hence the number of degrees of freedom  = 11. The chi-square criterion was calculated by 

the formula 

 






k

i i

ii

np

npm

1

2
2 ,     (8) 

where:   n   – sample size; 

k   –  number of classes used; 

im  – the number of sample numbers in the i–th class; 

ip  – probability of falling into the i–th class according to the normal distribution law. 

Samples of normally distributed numbers   j were tested, the accumulation of which was carried 

out from the 1st, 10000th, 100000th, 1000000th, 5000000th and 10000000th uniformly distributed 

number    i  of pseudo-random sequence. At each stage, three consecutively accumulated samples of 

volume (n) were tested, with 1000 normally distributed numbers   j  in each. 

The results of testing of normally distributed numbers generated by the function norm( ) are 

shown in the table. Comparing the obtained values of the chi-square criteria ( 2 ) with the chi-

square distribution, it can be noted, that the sequence of pseudo-random numbers under study is in 

good agreement with the normal distribution law.  
 

Table 1. The results of testing pseudo-random normally distributed numbers. 

Sample size n = 1000 

The number of the 

initial uniformly 

distributed number 

   i  

Criteria 
2  

Standard  

deviation 

 

Mathematical 

expectation 

 

1 6.071 

3.118 

5.360 

0.975 

0.990 

1.037 

-0.005 

-0.002 

0.001 

10000 6.513 

13.146 

11.595 

1.035 

1.020 

1.020 

0.019 

0.065 

0.009 

100000 10.381 

7.016 

13.768 

0.975 

0.979 

0.989 

-0.001 

-0.013 

-0.018 

1000000 11.899 

4.803 

15.981 

1.019 

0.992 

1.018 

-0.053 

-0.008 

0.007 

5000000 3.259 

12.066 

12.431 

0.978 

0.970 

1.037 

-0.002 

-0.014 

-0.054 

10000000 3.478 

4.919 

7.566 

0.999 

0.996 

1.014 

0.004 

0.030 

-0.005 
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Fig. 4 shows a histogram of the distribution of normally distributed pseudo-random numbers 

  j  constructed for a sample with a minimum value of chi-square criteria ( 2 ). Fig. 5 shows a 

histogram of the distribution of normally distributed pseudo-random numbers   j  constructed for a 

sample with a maximum value of chi-square criteria ( 2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusions 

The results of testing a large number of pseudorandom uniformly distributed    i  and normally 

distributed   j  numbers generated by the above algorithms lead to the conclusion that they fully 

correspond to the predetermined distribution laws over the entire length of the pseudo-random 

sequence. 

Therefore, the presented algorithms for obtaining pseudo-random numbers can be recommended 

for computer simulation of actual geometric shapes of spatial bar structures. With the aid of these 

algorithms, reliable results of such studies can be obtained. 
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