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Abstract The study of many processes and phenomena in engineering, mechanics, biology, 

physics, medicine, the vitality of buildings and structures leads to mathematical modeling and 

the construction of a mathematical model Such models facilitate a rigorous justification of 

ongoing research and is the only objective option obtain reliable predictions based on 

analytical methods.  

Typically, the mathematical model is one of the aspects of differential equations The basis for 

more accurate models are nonlinear differential equations In the presence of mobile singular 

points in the General case it is a class of equations not solvable in quadratures. This 

circumstance is an obstacle to researchers when constructing mathematical models. This is the 

importance of the development of the mathematical theory of their decisions.  

This paper presents technology and results of solution of some problems of approximate 

analytical method of solution of nonlinear differential equations with movable singularities: 

1  In a complex domain for one class of nonlinear differential equations of third order, not 

solvable by quadratures, made evidence theorem of existence of solutions in the field of 

holomorphes.  

2  A constructive proof of existence theorems, in contrast to existing classical variants, allows 

to construct analytical approximate solution of the considered class of nonlinear differential 

equations, which are used in mathematical modeling of the complex structures.  

3  The influence of the perturbation of initial conditions on the obtained analytical 

approximate solution has been researched.  

The obtained results are accompanied by the computational experiments proving their 

adequacy Solved by the authors of the problem allows you to create mathematical models of 

complex structures and phenomena. The obtained results allow to carry out the analytical 

continuation of the approximate solution with a given accuracy In which case, a posteriori error 

allows obtaining significantly more accurate a priori error.  

Keywords: mathematical modelling, nonlinear differential equation, movable singular point  

 

1.  Introduction 

Analysis of States of various systems includes a stage of mathematical modeling allows predicting the 

system state under specified impact. A more accurate mathematical model leads to nonlinear 
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differential equations, which require the development of mathematical theory for their solution  

As publications attest, differential equations represent mathematical models of various processes 

and phenomena in the theory of evolutionary equation [1], the theory of elasticity [2], the Kalman 

Filter theory [3], the nonlinear wave theory [4], nonlinear diffusion [5], mathematical model 

simulation for building structures [6]-[8] agricultural mechanization [9]. The development of the 

method of approximate solution of nonlinear differential equations, non-solvable by quadrature in the 

general case, presented in the papers [10]-[14], enables researchers to simulate more accurate 

mathematical models of investigated processes and phenomena based on nonlinear differential 

equations.  

2.  Study materials and research design  

In [15], taking into account the necessary condition for the presence of a movable singular point [16], 

their existence is proved, and an analytic approximate solution is constructed in the neighborhood of 

the movable singular point.  

In the present paper, for the considered class of nonlinear differential equations in a complex 

domain the existential theorem in holomorphic region has been proved, analytical approximate 

solution has been designed as well as the influence of perturbation of initial conditions on the latter 

has been researched.  This problem arises when we apply analytic continuation of the solution. It 

should be pointed out that the existing classical Cauchy’s theorem doesn’t provide means for obtaining 

the presented results.  

3.  The findings of the investigation 

Consider the nonlinear differential equation 

)()()( 21
2

0 zayzayzay  .  

The paper [14] suggests that the equation is reduced to a normal form by making the change of 

variable. Let us consider Cauchy problem 

)(2 zryy            (1) 

 00 )( yzy  ,   10 )( yzy  ,   20 )( yzy      (2) 

3.1.  Theorem 1.  

Suppose we are given hypothesis: 
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3.1.1. Theorem proving Under hypothesis of the theorem we have 
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Let’s substitute (3) and (4) into (1): 
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3)2)(1(   nnn ACCnnn ,     ...,4,3n                                      (5) 

Recurrence relationship (5) allows obtaining the expressions for the coefficients Cn on a personal 

computer. The reached expressions suggest the hypothesis for the estimated coefficient Cn: 
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We now show validity of the estimated coefficients C3n+3 . From the relationship (5) follows 
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By the same procedure we ascertain in the estimated coefficients C3n+1 and C3n+2  

Let us consider series  
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for which we receive the region on sure ground of a sufficient condition 

30
1

1




M
zz .  

Thus, due to specific characteristics of the estimated coefficients (6) Cn in (3) for the series in the 

formula (3), we receive the region 
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The structure of the approximate solution is determined by Theorem 1  

  
N

n

nN
zzCzy

0
0
)()(                                                   (7) 

3.2. Theorem 2.  

Under the preceding hypothesis 1 and 2 of the theorem 1, for approximate solution (7) the problems 
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for 131  nN  the valid estimate is as follows 
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and for the variant 231  nN  the estimate is as follows: 
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where 2  and M – from the Theorem 1 . 

3.2.1. Theorem proving. By definition 
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Analogously, in the case 131  nN  we have the estimate 
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and for the variant 231  nN  the valid estimate is: 
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The presented estimates of approximate solution are valid in the region 20  zz , where
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3.2.2. The example 1.  Let us consider Cauchy problem.  

zzyy  )(2 ,     iiy 3,05,0)1(  ,     iiy 5,05,0)1(  ,      

iiy  1)1( ,     iz 3,14,11  ,     5848035,02  .  

Numerical calculations are set out in the Table 1.  
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Table 1. Numerical calculations of approximate solution in the case of accurate initial 

conditions 

1z  )( 0zy  )( 0zy  )( 0zy   )(8 zy  1  2  

1.4+1.3 

 

0.5+0.3i 0.5+0.5i 1+ i 

 

i971656.0342557.0 

 

0.000237 6‧10
-6

 

Here )(8 zy  – approximate solution of Cauchy problem (1) - (2); 1  – prior error estimate according 

to the Theorem 2; 2  – posterior error estimate for which on the basis of the results of the Theorem 2 

the value 14N  is necessary. Summands from 9 to 14 in the structure of approximate solution do not 

exceed the specified accuracy 6106  . It follows that the value )(8 zy is obtained with the accuracy

6106  .  

While implementing analytical continuation of the solution of the problems (1) - (2), we arrive at the 

task of investigation of influence of initial conditions perturbation of the data of Cauchy problem 
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in the case 131  nN  we get 
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and for the variant 231  nN  the valid estimate is  
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At that 
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We now show the truth of the hypothesis for an estimate nC3
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 . With due account for recurrence 

relationship (5) we have 
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))23)(13(3( *

iiii

i
iii  

In the same manner we verify that the estimates for 13
~

 nC  and 23
~

 nC  are accurate. Then 















0

23
023

0

13
013

0

3
03

0

00
~~~~ n

n
n

n
n

n
n

n zzCzzCzzCzzC .  

Taking into account the estimates (11), we finally receive for 0  

)1(
)1(1

)1( 2
003

0

0 zzzz
zzMM

MMM





  . 

The estimate for 1  follows from the Theorem 2.  
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The proven estimates of approximate solution are valid in the region of 30  zz , where 












313
1

1
,min

MM
.   

Analysing the structure of the expressions for 0  and 1 , the following conclusions could be made: 

the expression for 0  depends on the value of perturbation of initial conditions while the expression 

1  is linked to the structure of analytical approximate solution. Combining these parameters in a 

certain manner, it’s possible to receive the value of approximate solution with the specified accuracy.  

3.3.2. The example 2. Let us consider Cauchy problem with perturbed initial conditions.  

zzyy  )(2 ,     iiy 971656.0342557.0)3.14.1(~  ,     

iiy 089490.2553761.0)3.14.1(~  , 

iiy 977412.2914639.1)3.14.1(~  ,     iz 7.18.12  ,     603928.03    

 

The calculations are set out in the Table 2.  

 

Table 2. The calculations of approximate solution in the case of perturbed initial conditions 

2z  )(~
1zy  )(~

1zy  )(~
1zy   )(~

8 zy  1  2  

1.8+1.7 
0.342557+ 

+0.97165i 

0.553761+ 

+2.089490 

1.914639 

+2.97741 

-1.269458+ 

+2.605812i 
0.00855 7  10

-5 

Here 1 – prior error estimate on the basis of the Theorem 3 results; 2  – posterior error estimate with 

the value  38N   as required in the structure of approximate solution according to the Theorem 3. 

The summands of approximate solution from 9 to 38 do not exceed the specified accuracy. In this 

way, it is fair to say that approximate solution )(~
8 zy  has an operational margin not exceeding the 

value 5107  .  

4.  Conclusion 

Solved by the authors of the problem allows you to create mathematical models of complex structures 

and phenomena. The obtained results allow to carry out the analytical continuation of the approximate 

solution with a given accuracy. In which case, a posteriori error allows obtaining significantly more 

accurate a priori error.  
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