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Abstract. The paper considers the relationship between the maximum deflections and the fre-

quencies of natural oscillations of oval isotropic composite plates, as well as the dependence of 

the stiffness coefficient of the seam on the stiffness of the shift connections and the frequency 

of the natural oscillations of the plate. At the first stage, the system of differential equations of 

transverse bending of a plate under the action of a uniformly distributed load and the differen-

tial equation of free transverse oscillations of the plate is solved. The composite plate at this 

stage is represented in the form of a solid structure with cylindrical stiffness Ds, which is 

equivalent to the cylindrical rigidity of the composite plate on the pliable connections. After 

the transformations, the following regularity is obtained, connecting the maximal deflection of 

the plate with its frequency of transverse oscillations. Oval two-layer composite plates with a 

ratio of small to major axis from 1.0 to 0.2 with transverse connections and shift connections of 

variable stiffness were studied over the entire surface of the plate for rigid pinching and pivot-

ing along the contour. The determination of oscillation frequencies and deflections was carried 

out by a numerical method. As a result of the research it was established that the oval compo-

site plates, regardless of the support scheme and the stiffness of the shift connections, comply 

with the regularities (1) with an accuracy of 5%. Based on the results of the study, the graphs 

of the dependence of the maximum deflection and the natural oscillation frequency of the plate 

on the stiffness of the shift connections at hinged support and pinching along the contour are 

constructed. On the second stage of the research, based on A.P. Rzhanitsyn’s theory of com-

pound rods, an analytical dependence of the stiffness of the seam on the rigidity of the shift 

connections was obtained. Based on the results of numerical studies, the dependence of the 

frequency of natural oscillations on the stiffness coefficient of the seam was obtained. The 

graphs of the dependence of the frequency of the natural oscillations of the composite plate and 

the stiffness coefficient of the seam upon the stiffness of the shift connections were construct-

ed. 

Key words: composite plate, maximum deflection, frequency of free vibrations, stiffness coef-

ficient of the seam, shear connections. 
 

1. Introduction 

A large number of works are devoted to the calculation of solid and composite plates [1, 2, 3, 4, 5, 6, 

7, 8, 9]. In [10-13], composite plates of square and circular shapes were studied, depending on the 

number of symmetrically and uniformly located shear connections, and the stiffness coefficients of the 

seams were determined as a function of the frequency of free vibrations of composite plates. The au-

thors also studied the stiffness coefficients of the seam for triangular composite plates [14, 15]. In this 

paper, the stiffness coefficients of seams were investigated as a function of the frequency of free vibra-

tions of oval composite plates with a different number of uniformly and symmetrically located shear 

connections. 

The determination of static and dynamic characteristics reduces to determining the deflections and 

frequencies of system vibrations in solving the relevant differential equations. The functional connec-

tion between the maximum deflection and the frequency of the fundamental tone of free transverse 

vibrations of elastic isotropic plates was proved by V.I. Korobko [5]. 

The differential equation of the plate transverse deflection has the form: 
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With the use of biharmonic operators, the equation takes the form: 

 022  )y,x(qWD ,      (2) 

where W = W (x, y) is the deflection function of the plate at the transverse deflection; 
2


2
 is a bi-

harmonic operator; D = EH3/(12(1 − ν2)) is cylindrical stiffness of the plate; q(x, y) is the law of the 

transverse load change. 

The differential equation of plate free vibrations: 
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where W = W (x, y, t) is the deflection function of a freely oscillating plate; m is the mass per unit area 

of the plate; E,  are respectively the modulus of elasticity of the material and the Poisson’s ratio. 

If the vibrations are harmonic  

W = W(x, y) cos(ωt) , (5) 

then equation (1) can be transformed to the following form: 

0222  WmWD  

or 

,WWD 0222   

where 
2
 = m

2
/D is the eigenvalue of the differential equation of oscillations of the plates.  

            

Let us represent the deflection function as a product of the maximum deflection W0 by the unit 

function f (x, y) and substitute it in the differential equations of transverse deflection and free vibra-

tions of the plates: 

W(x, y) = W0f(x, y) ; 
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It should be noted that the precise solution of these differential equations is valid only in the fre-

quent cases of plate forms and boundary conditions, therefore, in practice, approximate methods of 

solution are mainly used. 

If we assume that the plate is under a uniformly distributed load q, then having integrated equations 

(6) over the entire area of the region, and having performed the necessary transformations, we will get: 
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The deflection function W(x, y) can approximately be put down in a one-parameter form in the po-

lar coordinate system: 

𝑊(𝑥, 𝑦) = 𝑊0𝑓(𝑥, 𝑦) = 𝑊0𝑔 [
𝑡

𝑟(𝜑)
] = 𝑊0𝑔(𝜌) , (8) 

where r = r(φ) is the equation of the contour of the plate in the polar coordinate system, t and φ are 

polar coordinates, ρ = t/r() is the dimensionless polar coordinate. 
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This function describes a surface which level lines are similar to the region contour and are similar-

ly located. The representation of the function of deflections in this form is justified by the fact that 

through it we can write down the exact solution to the problem of transverse deflection of a rigidly 

pinched elliptical plate under the action of a uniformly distributed load. Since just in a single case it is 

possible to represent the real deflection function in the form of a one-parameter function (8), further 

results are of an approximate nature. 

We transform the integrals in (7), taking into account the deflection function in form (8). 
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Multiplying and dividing the right-hand side by r
2
, we get after the transformations: 
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Completing the transformation of the integral of the biharmonic operator according to [84], we 

finally write: 
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The sign of the approximate equality in (11) appeared under the transformation of integrals by 

means of the Bunyakovsky inequality. We substitute integrals (9) and (11) into expressions (6). After 

the necessary transformations, we get: 
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Since all the values of the definite integrals occurring in the expressions (13) are constant numbers 

depending on the accuracy of the choice of function g (), they can be represented as the proportion-

ality coefficients Kw, Kω and B. Then 
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where .ФФB;dgФK;ФK ggggw 12

1

0

11
2
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1    

Strictly speaking, the signs of approximate equalities should be put in expressions (14), in view of (12) 

and the approximation of function g (). 

Let us multiply the expressions (14) to each other: 
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Taking into account that the coefficients Kw and Kω depend on the shape of the plate, the following 

regularity can be obtained from the expression (15): for elastic isotropic plates of identical shapes with 

homogeneous boundary conditions, the product of the maximum deflection W0 from the action of the 

uniformly distributed load q per square of their fundamental frequency of transverse oscillations in the 

unloaded state, ω
2
 with accuracy up to the dimensional factor q/m is a constant. Thus, it is mathemati-

cally and rigorously proved that for the whole set of plates with homogeneous boundary conditions the 

product W0∙ω
2
 will be represented by a single curve. An important feature of the formulated regularity 

is the fact that the product W0∙ω
2
, which is considered in it, does not depend on the flexural rigidity 

and dimensions of constructions. 

Forms of plates can be very diverse – from round to infinitely elongated. It is quite appropriate to 

expect that the boundary values of the curve K = W0∙ω
2
 will correspond exactly to these plates. 

 

2. Investigation of the maximum deflections and frequencies of the free transverse vi-

brations of composite plates 
The calculate construction is a round plate consisting of two layers (Figure 1). 

 

 
Figure 1. The Scheme of composite oval plates 

 

Numerical studies of composite two-layer plates were carried out by the finite element method. 

When calculating the plates, two support schemes were investigated: rigid pinching on the contour and 

hinged support on the contour. 

The distance between the layers was taken as the distance between the centers of gravity of the 

layers. Each layer was divided into 288 finite elements (Figure 2). Wood-chip boards with a volume 

weight of 740 kG/m
3
 are accepted as plates. Modules of elasticity were adopted for wood chipboard  

E = 2600 MPa (according to the specifications for chipboards), for steel – Est = 206000 MPa. All in-

vestigations were carried out under the assumption of elastic work of the material of the layers, verti-

cal connections and shear connections. 

A uniformly distributed load was taken q=1 kN / m
2
 and was applied to the upper layer of the 

composite plate. To determine the free frequencies of the transverse vibrations of the plates, concen-

trated masses were applied to the structural units from the self-weight of the layers in accordance with 

the load area of the connections. Determination of vibration frequencies and deflections was carried 

out using the software complex “SCAD” [16]. The rigidity of transverse connections was taken as the 

appropriate steel dowel pin with a diameter of 2 mm and remained constant during the investigations. 

The stiffness of the EAсс shear connections for all the plates varied from 100 to 105 kN with a step 
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from 1 N to 104 N. The results of numerical studies of the plate are given in Tables 1-2. 

 

 
а) 

 

b) 

Figure 2. The finite-element calculation scheme of a composite plate (a) and elements of a 

composite plate with connections (b) (1 – the final element of the upper layer, 2 – the final element of 

the lower layer, 3 – transverse connections, and 4 – the shear connections) 

 

Table 1. Results of numerical studies of a composite oval plate rigidly pinched on the contour 
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500  

0 39.785 150.6985 39.127 150.557 1.624954 

1.62486 

 

-0.00576 

1 41.899 143.8618   1.638201 -0.82107 

2 45.389 131.2015   1.590229 2.131343 

3 58.926 95.238   1.572061 3.249425 

4 82,414 68.4372   1.585948 2.394808 

5 98.742 51.2315 97.548 50.657 1.611177 0.842096 

400 

0 47.021 144.8235 36.04 144.234 1.625039 

1.625 

 

-0.00242 

1 50,114 137.9868   1.646427 -1.31859 

2 63.412 125.3265   1.603825 1.30305 

3 67.875 85.1114   1.534732 5.55498 

4 95.411 62.5622   1.634143 -0.56266 

5 103.254 39.3565 93.488 44.957 1.64626 -1.30832 

300 

0 67.771 129.065 66.522 127.458 1.533186 

1.627 

 

5.766049 

1 69.885 122.2283   1.62742 -0.02579 

2 72.375 109.568   1.655604 -1.75806 

3 85.912 65.7659   1.712715 -5.26829 



6

1234567890‘’“”

FORM 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 365 (2018) 042001 doi:10.1088/1757-899X/365/4/042001

4 103.4 49.2167   1.70241 -4.63491 

5 121.888 29.011 120.478 19.05 1.570312 3.484234 

200 

0 76.458 110.578 75.748 109.457 1.602798 

1.628 

 

1.548021 

1 78.572 103.7413   1.667748 -2.44152 

2 81.062 91.3468   1.72332 -5.85505 

3 94.599 53.2789   1.694106 -4.06056 

4 112.087 28.7297   1.600325 1.699958 

5 130.575 18.524 129.748 16.248 1.564619 3.893208 

 

Table 2. The results of numerical studies of a composite oval plate hinged on the contour 
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500  

0 45.253 87.351 45.224 86.873 1.638076 

1.578 

-3.66747 

1 45.537 86.073   1.634433 -3.45277 

2 50.039 66.449   1.523621 3.56903 

3 64.949 40.088   1.54857 1.900491 

4 97.542 25.117   1.621876 -2.70529 

5 119.57 18.211 148.984 17.247 1.532364 2.978134 

400 

0 59.412 73.188 62.474 73.044 1.571213 

1.577 

 

0.368296 

1 62.696 71.91   1.557859 1.228703 

2 70.159 59.686   1.619192 -2.60574 

3 88.364 34.847   1.499599 5.161434 

4 115.479 22.595   1.660647 -5.03704 

5 122.507 15.573 167.405 14.347 1.63301 -3.42988 

300 

0 68.808 40.371 68.776 40.222 1.656309 

1.575 

 

-4.90907 

1 69.092 39.093   1.617146 -2.6062 

2 72.637 35.87   1.639991 -3.9629 

3 99.24 30.24   1.645375 -4.27716 

4 120.41 20.1   1.519775 3.633778 

5 141.78 13.87 114.897 13.765 1.611159 -2.24427 

200 

0 85.36 33.47 75.587 33.57 1.656775 

1.5783 

-4.9358 

1 90.257 27.009   1.495289 5.330837 

2 93.24 23.14   1.526128 3.202349 

3 118.111 17.44   1.523691 3.367447 

4 137.517 13.96   1.52832 3.054332 
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5 158.368 4.248 122.968 4.157 1.512163 4.15544 

 

 

3. Investigation of the stiffness coefficient of an oval composite plate  
In the framework of the study, the problem of studying the stiffness coefficient of the seam ξ was also 

solved, depending on the stiffness of the EAcc shear connections, which varies from 10-6 to 109 kN. 

The stiffness coefficient of the seam ξ is determined by the results of dynamic tests of composite 

plates, which greatly simplifies the evaluation of the rigidity of the structure in experimental studies. 

An oval plate with dimensions b = 1000 mm, a = 500 mm was taken as a calculation construction. 

Two conditions for supporting the plates along the contour were considered: a hinged and rigid pinch-

ing. Supports along the contour of the plate were located at the connections of the finite elements of 

the layers, and their boundary conditions were the same. 

The plates are connected by transverse connections in order to avoid removal or convergence of the 

layers with respect to each other, their rigidity is EAcc = 8
3
 kN, which corresponds to the rigidity of a 

steel dowel pin with a diameter d = 2mm. The distance between the layers was assumed to be 10 mm, 

which corresponds to the thickness of the layers. A chipboard was taken as a layer. 

The calculation was carried out in the software package SCAD. As a result of the calculation, the 

fundamental frequency of the transverse vibrations and the value of the distributed moments were de-

termined:  
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when µI = µ, µconv = µ. 

Let us consider a particular case of a composite plate of two working layers. For this, we set the 

number of seams n = 1 for equations (16) and (17). We have the system of equations: 
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where D0 is the actual cylindrical stiffness equal to  
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where, Ei
*
 is  the modulus of elasticity of the layers in the composition of the composite plate, while 

the indices of the seams are omitted, since the seam in our cases is one. 

Eliminating the parameter T from the system of equations (18), we obtain: 
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where  Dconv is  cylindrical rigidity of some conventional continuous plate. 

We get: 
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For the plate: 
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On the basis of this identity, the equation can be written: 
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We express the stiffness coefficient of the shear connection from this identity: 
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where D0 is the actual cylindrical rigidity, Dconv is the cylindrical stiffness of a conventional solid 

plate, Dm is the  cylindrical rigidity of the monolithic plate with the longitudinal modulus of elasticity 

in the seam area, M is the maximum moment. 

The results of the calculation of a rigidly pinched and hinged plate are given in Tables 3 and 4, re-

spectively. According to the data presented in these tables, the graphs of dependence on the stiffness 

coefficient of the seam, on the stiffness of shear connections were constructed (Figure 3). 

 

Table 3. Numerical studies of a plate rigidly pinched along the contour with a change in the stiffness  

of the shear connections  

№ №  lgEAсс 
Circular frequency 

of the fundamental 

tone, ω (с
-1

) 

Distributed mo-

ment, Mx (My) 

(N×м/м)) 

Maximum 

moment, ac-

cording to for-

mula (15), M 

(N×м/м) 

Stiffness coeffi-

cient of the seam, 

ξ×10
6
 (N/м

3
) 

1 -6 189.8418 34.30233 22.67527 115.3556 

2 -5 189.8418 34.30233 22.67527 115.3556 

3 0 189.8534 34.30233 22.67527 115.3556 

4 1 189.958 34.28271 22.6451 115.5139 

5 2 190.9941 34.09639 22.35844 124.0458 

6 3 210.5056 32.60578 20.0652 131.4197 

7 4 252.9856 27.99665 12.97423 229.1314 

8 5 325.6355 26.04513 9.971889 356.9954 

9 6 347.5162 25.80977 9.609798 384.0339 

 

Table 4. Numerical studies of a plate hinged on the contour with a change in the stiffness of the shear 

connections  

№ №  lgEAсс 

Circular frequen-

cy of the funda-

mental tone,  

ω (с
-1

) 

Distributed mo-

ment, Mx (My) 

(N×м/м)) 

Maximum mo-

ment, according 

to formula (15), 

M (N×м/м) 

Stiffness coeffi-

cient of the seam, 

ξ×10
6
 (N/м

3
) 

1 -6 121.4964 48.69819 42.75722 85.2154 

2 -5 132.1142 48.69819 42.75722 90.2231 

3 0 134.4782 48.68839 42.74213 92.7145 

4 1 141.6124 48.60013 42.60635 111.2254 
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5 2 160.0014 47.73714 41.27868 120.1471 

6 3 170.2011 42.04928 32.52813 132.0017 

7 4 189.6918 32.28186 17.50132 152.5628 

8 5 261.6205 29.47716 13.1864 236.9935 

9 6 285.026 29.0947 12.598 257.0889 

 
 

Figure 3. Dependence of the frequency of free vibrations (ω) on the stiffness coefficient of the 

seam (ξ) of the composite plate: (1 – “ω – ξ ” dependence for rigid pinching along the contour; 

2 – “ω – ξ ” dependence for hinged support along the contour) 

 

As a result of numerical studies, the maximum deflections and fundamental vibration frequencies for 

oval-shaped plates were determined under different support conditions. The maximum error for hard-

clamped plates was 5.76%, and the minimum error was 5.85%;  in case of the hinged support, the max-

imum error was 5.30%, and the minimum error was 5.03%. 

From the obtained graphs, it can be concluded that the stiffness of the seam depends on the funda-

mental vibration frequency of a composite plate. 

 

References  

[1]   Rzhanitsyn A 1976 Calculation of composite plates with absolutely tight cross couplings. Re-

searches on the theory of constructions, issue XXII (Moscow: Stroyizdat) pp. 120-133.  

[2]   Rzhanitsyn A 1986 Composite rods and plates. (Moscow: Stroyizdat), 316 p.  

[3]   Kalmanok A 1950 Construction mechanics of plates (Moscow: Mashstroyizdat), 303 p. 

[4]   Shaposhnikov N 1968 Calculation of plates on a bend according to the finite-element method 

(Works of MITE) 250, pp. 134 – 144.  

[5]  Korobko V I 1989 About one “remarkable” regularity in the theory of elastic plates (The news of 

higher education institutions. Construction and architecture) 11 pp.  32-36.  

[6]  Korobko A V, Chernyaev A A and Shlyakhov S V 2016 Application of the technique of the meth-

od of interpolation according to the shape coefficient for the calculation of triangular and quad-

rangular plates using widely known geometric parameters Construction and Reconstruction 4 

pp. 19-29.  

[7]  Korobko A V, Chernyaev A A and Shlyakhov S V 2017 The relationship between the problems of 

transverse bending and free vibrations of elastic plates in the form of polygons circumscribed 

around a circle, with boundary conditions of rigid pinching and hinged support along the con-

tour Construction and Reconstruction 1 pp. 39-49. 



10

1234567890‘’“”

FORM 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 365 (2018) 042001 doi:10.1088/1757-899X/365/4/042001

[8]  Korobko A V and Savin S Y 2011 Bending of rectangular orthotropic plates with homogeneous 

and combined boundary conditions Construction and Reconstruction 5 pp. 29-34. 

[9]  Korobko A V and Savin S Y 2013 Free oscillations of rectangular orthotropic plates with homo-

geneous and combined boundary conditions Construction and Reconstruction 1 pp. 13-18. 

[10]  Turkov A V and Marfin K V 2012 Interrelation of maximum deflections and frequencies of natu-

ral vibrations of composite square isotropic plates depending on the number of symmetrically 

located shear connections Construction and Reconstruction 2 pp. 44-48. 

[11]  Turkov A V and Marfin K V 2012 Determination of the stiffness coefficient of the seam of a 

square compound isotropic plate based on its fundamental frequency Construction mechanics 

and calculation of constructions 5 pp. 38-44. 

 [12]  Turkov A V and Marfin K V 2013 Determination of the stiffness coefficient of the seam of a 

circular composite isotropic plate at its fundamental frequency Construction mechanics and 

calculation of constructions 4 pp. 58-62. 

[13]  Turkov A V and Marfin K V 2013. Determination of the stiffness coefficient of the seam of a 

circular composite isotropic plate at its fundamental vibration frequency. XVI International 

scientific and practical conference of students, undergraduates, graduate students and young 

scientists “Construction – the formation of the environment of life” (Moscow). Pp. 187-190.  

[14]  Turkov A V and Karpova E V 2015 The study of a seam stiffness coefficient for a triangular 

composite isotropic plate depending on its basic frequency of oscillations in case of different 

rigidness of shift bindings Construction mechanics and calculation of constructions 2 pp. 66-

69. 

 [15]  Karpova E V 2015 Investigation of the stiffness coefficient of the sea of composite triangular 

isotropic plates, depending on the number of symmetrically located shear connections. XVIII 

International Interuniversity Scientific and Practical Conference (Moscow, Moscow State 

University of Civil Engineering). Pp. 238-242.  

[16]  Semenov A A and Gabitov A I 2005 The SCAD project computer system in educational process 

(Moscow: ASV publishing house) 152 p. 


