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Abstract. The exposure of cultural heritage to the environment has a significant impact on its 
degradation process and degradation rate. Consequently, managing the indoor air quality is vital 
to minimize further damage to historical artefacts and works of art. Despite its potential impact, 
the traditional assessment of the indoor air quality still represents a challenge for most collection 
guardians. This approach typically relays on the comparison of measured environmental 
parameters and corresponding acceptable values. However, determining the acceptable values 
and relative importance of the different environmental parameters turns out to be quite complex 
since it depends on the material types present in the collection and their preservation state. 
Furthermore, the significant amount of data generated during the measurements hampers the 
application of traditional methods of analysis. 
Considering all these, we propose the use of data mining as an alternative method for the indoor 
air quality assessment in cultural heritage studies. Data mining can provide knowledge from vast 
volumes of heterogeneous data, through high-speed processing, detection, and analysis. Here we 
present its application to identify dynamics and patterns affecting the indoor air quality in a 
realistic case. Using data from a measuring campaign held at a late Gothic church in Belgium, 
we show that inappropriate periods can be identified without using standards. In addition, 
different types of periods can be identified by studying the relation between multiple parameters. 
For that we use the k-means clustering method, interpreting the results with both visual and 
statistical tools.  

1.  Introduction  
Several studies have already demonstrated how the exposure to an aggressive environment has a 
significant impact on the degradation process and degradation rate of cultural heritage objects [1]. Based 
on these findings heritage guardians and institutions have now an increasing interest in managing the 
indoor air quality and provide stable environmental conditions to minimize, as much as possible, the 
occurrence of further damage to historical or valuable artefacts on their collections. However, 
monitoring and evaluating relevant environmental data is a challenging task for most heritage guardians, 
mainly due to the considerable amount of information generated, and the uncertainties behind the 
selection of the acceptable environmental values. 

Continuous indoor air quality monitoring implies the collection of vast amounts of data that can 
quickly become overwhelming for specialists with limited experience in data science. This is aggravated 
when an increasing number of environmental parameters are analysed. Temperature and relative 
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humidity are the most common parameters monitored by the heritage community, but other parameters 
such as visible light, UV radiation or pollution also have a remarkable influence on the degradation rate 
of most objects. With the currently available technology these parameters can be monitored as well, and 
they should be considered to achieve an accurate assessment [2]. 

Traditional assessments usually rely on the comparison of measured environmental parameters with 
their corresponding acceptable values. Unfortunately, the target values are not precisely known, and 
they depend on variables such as the material type, preservation state, etc. This entails a strong 
dependency on the selected guidelines that define acceptable environmental values, and will be reflected 
in the accuracy of the analysis [3].  

Given the preceding, we propose a complementary approach to aid indoor air assessment for heritage 
conservation based on the implementation of Big-Data related techniques, such as data mining and data 
analytics. The goal of these techniques is to extract relevant knowledge from data. In our specific context 
we focus on interesting patterns or atypical behaviours [4]. A similar approach has already been 
successfully implemented in indoor environment quality assessment for human health and comfort [5]. 
However, the application of this method for a comprehensive environmental characterization is still 
uncommon in the field of cultural heritage studies. 

We present here our results from the implementation of the techniques mentioned above for 
recognizing inappropriate periods in the absence of standards or guidelines, and identifying dynamics 
or patterns affecting the indoor air quality in a specific case study. 

2.  Materials and Methods  

2.1.  Case study 
To evaluate the viability of our approach, we analysed the data gathered from 23/07/2017 to 23/10/2017 
in a measuring campaign held at a late Gothic church in the centre of a small Belgian city. The 
environmental information was collected with an innovative multi-sensor tool that registered every 15 
minutes the values of temperature, relative humidity, illuminance, particulate matter (PM), nitrogen 
dioxide (NO2) and ozone (O3) concentrations among other parameters [2]. This resulted in a data matrix 
of 8928 measuring points (matrix rows) and 7 measurements per point including the above mentioned 
parameters (matrix columns). In addition, every measuring point was labelled with a timestamp and the 
corresponding weekday number in which the measurements were performed (e.g., Monday = 1). 

2.2.  Identifying periods of elevated risk 
Our method for the identification of periods of elevated risk is based on three main suppositions.  

1. A stable climate is more conducive for heritage conservation, especially in the case of 
temperature and relative humidity acting over hygroscopic materials [6]. 

2. Keeping the light exposure and the concentration of pollutants as low as reasonable achievable 
minimises the risk of material degradation [7].  

3. Short-time fluctuations will not necessarily affect all objects, since the reaction time of the piece 
must be shorter that the fluctuation in order to have a potential impact on its conservation state. 
[8] 

Considering the third supposition, we start the analysis by filtering out the short-time fluctuations. 
There are several classes of filtering methods, but the most widely used apply statistical measures over 
moving windows [9]. The mean value is often used as the statistical measure for the data in the window. 
Consequently, a moving mean is calculated creating series of averages of different subsets as the window 
shifts over the full data set. 

Moving means are ordinarily used to smooth out short-term fluctuations and highlight longer-term 
trends or cycles in time series data. In our case, the use of the moving mean method filters out the 
fluctuations caused by the day and night variations exposing the regular seasonal variations or the 
anomalous behaviour that occurred during periods of elevated risk. 
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Considering now the first and second suppositions we can establish that the periods where the filtered 
data presented the higher fluctuations were the periods most likely to be linked to an elevated risk of 
degradation. For temperature and relative humidity, the relevant fluctuations can be found above or 
below the mean value, while for the rest of the environmental parameters, only the fluctuations above 
the mean would be noteworthy. 

2.3.  Clustering data, k-means clustering 
Clustering is an unsupervised learning method that assigns labels to objects in unlabelled data that can 
be implemented by different types of algorithms [9]. For our research, we selected the k-means 
clustering, a data-partitioning algorithm based on iterative minimization of the sum-of-squares criterion 
[10]. 

Clustering validation was performed with two different methods: the Davies-Bouldin index, and 
Silhouette value. The Davies-Bouldin criterion is essentially a ratio of within-cluster and between-
cluster distances. Based on its analysis the optimal clustering solution has the smallest Davies-Bouldin 
index value [11]. The Silhouette value is a measure of how similar a point is to points in its own cluster 
when compared to points in other clusters [12]. This value ranges from -1 to +1, where a high silhouette 
value indicates that the point is well-matched to its cluster and poorly-matched to neighbouring clusters. 

3.  Results and Discussion 
The complete data set studied is presented in Figure 1. As mentioned in the previous section, seven 
different environmental parameters were monitored every 15 minutes during 93 days, resulting in data 
streams of 8928 elements each. This data set cannot be regarded as considerably large when compared 
to a typical climate characterization campaign that should cover, at least, one full year of data. However, 
it is more than enough to hinder a prelaminar assessment through visual inspection. There are certainly 
patterns in the data, but there is too much information to get a clear grasp of them. One characteristic 
that all the parameters share is the unremitting presence of short time fluctuations, mainly related to the 
day-night cycle. 

 

 
Figure 1. Environmental data registered for temperature, relative humidity, illuminance, ultraviolet 

radiation, particulate matter (PM2.5), NO2 and O3 concentration. 
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In order to filter out the daily fluctuations we calculated the moving mean of the parameters with a 
symmetric window of 96 data points, which covers a period of 24 hours in the time scale of our case 
study. The result of its application on the case of relative humidity is presented in figure 2 (a). In this 
figure we plotted the measured data points for relative humidity, the mean value over the complete 
period analysed, the confidence bars delimited by the standard deviation (std) and the correspondent 
moving mean. By filtering higher frequency fluctuations, the moving mean shows now a gradual, but 
still appreciable overall increment during the studied period, which match the expectations for the 
seasonal transition from summer to autumn.  

 

(a) 

 

(b) 

Figure 2. (a) Data registered for relative humidity, its mean value over the time analysed, 
confidence bar of ± the standard deviation, and moving mean for a symmetrical window of 24 

hours. (b) Difference between the values of the moving mean outside of the confidence bar. 
 

In figure 2(a) we can notice periods where the moving mean reached extreme values crossing the 
confidence bar. These periods are the most deviated from the typical behaviour, and consequently, more 
likely to be linked to unusual events or even to potentially dangerous occurrences. The magnitude of the 
difference between these points and the standard deviation can be used as a metric to characterize their 
anomaly. Plotting this magnitude would filter out the periods where the environmental parameter 
exhibits a standard behaviour, and therefore, directly guiding the analysis to periods of elevated risk. 
This analysis is illustrated in figure 2(b), where the difference between the values of the moving mean 
outside of the confidence bar and the standard deviation (DRHmm) are plotted as a function of time. 

This analysis facilitates the detection of extreme periods and can be implemented for all the 
environmental parameters on our dataset. Figure 3 shows the normalised values of these differences 
between the moving means and the corresponding confidence bars (y-axis) as a function of time for all 
parameters. The normalization was performed to establish an unbiased comparison unrelated to the 
measuring units of the parameters. For each case, the higher the difference value, the more atypical is 
the corresponding period. Due to the significant amount of data filtered out, it is still possible to identify 
the atypical episodes clearly, even when showing the information of all the parameters in the same 
graph. 
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Figure 3. Normalised differences between the moving means of each environmental parameter and 

the corresponding confidence bars, identifying atypical periods. 
 

For the implementation of the k-means clustering method, we analysed the entire data matrix of 
environmental data collected. Each column was normalised by rescaling in the range from 0 to 1 before 
applying the clustering method to avoid assigning artificial weights to the data. The clustering algorithm 
was implemented for k values from 2 to 15, each done in 5 separated runs. The resulting 13 cluster 
distributions were evaluated using the Davies-Bouldin and Silhouette criteria, and a detailed inspection 
of their characteristics. Based on these, we selected k=4 as the most relevant distribution for classifying 
our data set. 

 
Table 1. Cluster interpretation data. 

  Day  Temperature 
(ºC) RH (%) Illuminance 

(lux) 
UV 

(mW/m2) 
Pm2.5 

(µg/m3) 
NO2 
(ppb) 

O3 
(ppb) 

C
lu

st
er

 1
 min 1 19.153 51.436 0.000 0.000 5.153 0.000 0.000 

max 7 24.282 74.018 357.674 22.470 64.358 15.323 7.999 
mean 3.862 21.244 61.026 40.040 1.935 12.406 2.754 1.165 

C
lu

st
er

 2
 min 1 14.646 56.147 0.000 0.000 2.973 0.000 0.000 

max 7 21.237 79.006 680.531 25.351 64.605 11.779 7.358 
mean 4.045 17.205 65.755 236.407 8.743 14.333 2.355 1.613 

C
lu

st
er

 3
 min 1 14.647 60.476 0.000 0.000 4.024 0.000 0.000 

max 7 20.950 80.067 279.758 18.022 62.399 12.423 7.389 
mean 4.063 17.008 69.350 30.157 1.148 11.937 3.086 1.146 

C
lu

st
er

 4
 min 1 18.163 49.346 0.000 0.000 6.164 0.000 0.000 

max 7 24.462 74.655 942.825 85.150 85.777 10.240 9.895 
mean 4.088 21.646 59.063 284.142 17.988 12.891 1.461 1.614 

 
The data interpretation of each cluster is presented in Table 1. We found two sets of patterns that 

provide physical meaning to the cluster distribution. One pattern is defined by the presence of lower 
values of illuminance and ultraviolet radiation (clusters 1 and 3) or higher values of these two 
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environmental parameters (clusters 2 and 4). The other pattern is set by the anti-correlation of 
temperature and relative humidity. Clusters 1 and 4 hold higher temperature and lower relative humidity 
(summer), while clusters 2 and 3 are the opposite (autumn). 

Plotting the temporal distribution of the 4 clusters, figure 4(a), confirms our hypothesis on the 
seasonal influence. Comparing the graphs in figure 4(a) and 4(b) we can confirm that clusters 1 and 4 
comprehend the periods where the temperature was above the mean value, while the temperatures in 
clusters 2 and 3 where below the average. From figure 4(a) we can also conclude that the distribution 
based on the illuminance and UV levels does not exactly reflect the day-night variations. The number 
of days during the analysed period does not match the number of repetitions of the clusters, therefore 
the difference comes from the distribution of brighter days (clusters 2 and 4) and nights or darker days 
(clusters 1 and 3). 

(a) 

                          Cluster 1                       Cluster 2                         Cluster 3                         Cluster 4 
 

 

(b) 

Figure 4. (a) Cluster distribution over time and (b) temperature distribution for comparison. 

 
Figure 5. Cluster distribution for the plane temperature vs illuminance. 
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These distributions are also recognisable by plotting the clusters in the plane of temperature and 
illuminance (figure 5). In this graph the clusters can be found in 4 different quadrants representing nights 
and darker days of summer (cluster 1), brighter days of summer (cluster 4), brighter days of autumn 
(cluster 2), and nights and darker days of the same season (cluster 3); confirming our previous 
interpretation.  

 

 
Figure 6. Cluster distribution regarding particulate matter and corresponding weekdays. 

 
The analysis of the cluster distributions over different axes combinations can provide information 

about patterns in the environmental conditions. An example of this is presented in figure 6, where we 
plot the behaviour of particulate matter for each cluster as a function of the weekday number. In this 
figure is observed that, independently of the season, the lowest values of particulate matter were reached 
during the weekends, especially on Saturdays. In contrast, the higher concentrations, linked to periods 
of elevated risk, were reached on Tuesdays during brighter summer days (cluster 4). The source of this 
increment in the particulate matter concentration is most likely related to the construction works going 
on during the period. However, we cannot discard the influence of other sources, such as heavier traffic 
on workdays compared to weekends; or different internal sources, like a larger number of visitants 
during summer holidays. Nevertheless, being able to identify that this particular behaviour is connected 
to specific weather conditions can facilitate the selection of mitigation actions and alert heritage 
guardians about the potential risk during periods with similar characteristics. 

4.  Conclusions 
This study revealed that, on the basis of three simple suppositions, it is possible to identify periods of 
elevated risk without the use of any specific guideline. The proposed approach detects periods of sudden 
change that deviates from the standard behaviour and filters out the information regarding stable periods. 
Despite this, the method would fail for periods of constant inappropriate environmental conditions. For 
that reason, we consider it as a complementary method, and not a substitution, to the use of norms or 
guidelines. However, in the cases where the application of direct guidelines is not a viable option, 
heritage guardians could still use our method to propose mitigation actions that would reduce the risk of 
degradation during the most extreme periods. 
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Our study also showed that the extended data matrix of environmental measurements does contain 
different types of patterns superposed on top of each other. By using clustering techniques, such patterns 
become easier to detect and interpret, facilitating the study of potential hazards. 
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