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Abstract. This study aimed to examine the tensile shear force and microstructure of copper 

sheets when Ag-Cu-P filler metal was applied for the joints involved in the production of 

laminated micro-channel array (LMA) devices. The properties of the microstructure of the Ag-

Cu-P/copper brazed joints were examined following a process which included furnace brazing, 

with the parameters comprising temperature, holding time, and loading pressure. Analytical 

tools included an energy dispersive spectrometer (EDS), scanning electron microscope (SEM) 

and X-ray diffraction analysis (XRD). In addition, tensile tests were performed to measure the 

tensile shear force. It was difficult to observe the Cu3P which forms along with the layer 

between the Ag-Cu-P filler metal and the copper sheet when the brazing temperature was only 

580°C since this allowed gaps to form within the joint, thus producing very low tensile shear 

force results. When the brazing temperature is increased to 620°C along with longer holding 

time and increased pressure, this allows a thicker phase of Cu3P to form in the brazing joint. 

With a holding time of 30 minutes and pressure of 12.173 kPa, tensile shear force was 

maximized since this condition produced thick Cu3P phase. It is apparent that it is possible to 

produce a brazed joint which has an average shear force of 736.27 N under these conditions as 

described above. Within the joint could be found a Cu3P phase with no brittle phase. 

1. Introduction 

The large-scale processing of mass and energy through laminated micro-channel array (LMA) devices 

is known as micro-channel process technology (MPT). [1–2]. In comparison with conventional fluidic 

technology the most significant advantage of MPT is the very high the ratio of surface area to volume, 

permitting heat and mass transfer to take place very quickly within the micro-channels as the distances 

over which diffusion taking place are much shorter. This allows micro-channels to provide energy and 

chemical systems of reduced weight and size [3]. MPT is applied to an ever greater extent in numerous 

industrial application, such as the recuperation of waste heat, and portable heat exchanger [4].  

In recent years, MPT technology has been made using mechanical processes, or by selective laser 

melting. Under mechanical methods, the structures are made by cutting sheets very accurately and 

then joining the stacked sheet layers to make the MPT device by fusion joining or by brazing and 

diffusion bonding [5]. In fusion welding, sheets are joined around the edges, ensuring that the micro-

channels are not inevitably in direct contact with each other, and thus the total welding area is not 

large. These particular MPT devices are not expected to endure high pressure, while a further 

weakness is the development of the heat affected zone (HAZ), which can undergo considerable change 

to the bonded material microstructure, which ultimately causes the loss of mechanical properties [6]. 
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Earlier studies have presented a number of methods such as, diffusion bonding or fusion welding. 

These approaches have all been used to form the joints in manufacturing MPT devices [7–8]. The 

most widely used approach in MPT production is diffusion bonding. This method is widely used 

because it ensures that the micro-channels are tightly held together. In addition, there is no liquid 

phase involved in the process, and the procedure can employ parameters which do not result in 

changes to the microstructure. However, lengthy bonding time is required for diffusion bonding. 

In this study, the solid-state diffusion brazing of copper sheets using Ag-Cu-P filler metal is 

proposed as another alternative for LMA fabrication. The research involves brazing using varying 

parameters of holding time, brazing temperature, and loading pressure. The microstructure and tensile 

shear force of the brazed joint were assessed using SEM and EDS, while tensile tests were performed 

to evaluate the tensile shear force of the joint. The effects of changes in the three parameters upon the 

characteristics of the joints were subjected to detailed examination. The relationship between the 

microstructure and the mechanical properties of the joint is discussed in this paper. The results of this 

study should prove to be useful in establishing the set of manufacturing processes which can 

subsequently be employed in the development of a range of LMA devices.  

2. Experiment 

2.1. Materials and methods 

For the solid-state brazing, the base material used in the study was commercially pure copper at a 

thickness of 0.350 mm. The samples were divided into rectangular plates with 10×27.7×0.35 mm in 

dimensions. Ag-Cu-P with a thickness of 0.250 mm was employed as the filler metal. In the 

experiment, rectangular plates of the filler metal were cut to a size of 10×5×0.25 mm. Furnace brazing 

was carried out using a BOREL Swiss SA No. S0908 model. The solid-state brazing process was 

performed under a hydrogen atmosphere to prevent the oxidation. Following the solid-state brazing 

process, the microstructure was examined and the composition of the brazing joints was assessed 

using SEM (JEOL model JSM-6510LV, Japan). An EDS (Inca, Oxford, UK) was also employed for 

the analysis. Testing of the tensile shear force of the brazing joints was carried out at room 

temperature and a crosshead speed of 0.1 mm/min, using Shimadzu AG-100 universal testing machine. 

The phases in the filler metal and brazed joints were identified using XRD (Bruker D8 Discover), and 

Cu Kα was chosen as the X-ray source. 

3. Results and Discussion 

3.1. Ag-Cu-P filler metal microstructure 

The microstructure of Ag-Cu-P filler metal is presented in Figure 1 (a-e). Among the phases shown, 

the white one is associated with silver, the light gray color comprises of copper, and the dark gray area 

is Cu3P compound. Chemical composition analysis can be employed to determine the exact 

constituents and distribution of the major phases, as displayed in the Table 1. 

 

Figure 1. (a) Characteristics of the Ag-Cu-P filler metal microstructure; (b) Profile analyses of the 

filler metal by EDS linear scanning; Element distribution maps for the filler metal generated via EDS, 

including (c) Silver; (d) Copper and (e) Phosphorus. 



3

1234567890‘’“”

9th International Conference on Mechatronics and Manufacturing (ICMM 2018) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 361 (2018) 012001 doi:10.1088/1757-899X/361/1/012001

3.2. Brazed joint microstructure characterization 

The microstructure of the brazed joint between the copper sheet and the filler metal is presented in 

Figure 2. The brazing conditions consisted of a temperature of 620°C for 30 minutes at a loading 

pressure of 12.173 kPa. In this case the wetting of the filler metal with the copper sheet was very good, 

and no holes or cracks were found in the joint as shown Figure 2 (a-b). There are two distinct parts of 

the brazing joint, which are denoted using the Roman numerals I and II as shown in Figure 2 (a-b). 

The section marked as I consists of the continuous reaction layer which is nearest to the copper sheet, 

while the section marked II forms the center of the joint. The two parts, I and II consist mainly of the 

silver phase (in white, denoted by 1), while the copper phase is light gray denoted by 2, and the dark 

gray phosphorus phase is shown at point 3. The compositions of the marked zones shown in Figure 2 

(b) tabulated in Table 1. 

Table 1. The compositions of the marked zones from Figure 2 (b) and Figure 4 (a, f and k). 

Solid-state brazing condition Position 
Composition (at. %) 

Possible phase 
Ag Cu P 

 1 89.00 10.44 0.56 Ag 

Filler metal 2 0.92 96.03 3.05 Cu 

 3 0.05 70.36 29.59 Cu3P 

 1 64.09 28.88 7.03 Ag 

580°C; 10 min; 8.656 kPa 2 1.47 95.87 2.66 Cu 

 3 8.27 70.12 21.61 P 

 1 56.37 42.97 0.65 Ag 

600°C; 30 min; 12.173 kPa 2 0.79 79.70 19.51 Cu 

 3 1.66 85.79 12.54 P 

 1 85.35 14.07 0.58 Ag-rich 

620°C; 30 min; 12.173 kPa 2 1.85 95.35 2.80 Cu-rich 

 3 0.57 74.43 25.01 Cu3P 

 

Figure 3 (a-d) presents the EDS results in the form of compositional maps of the brazed joint along 

with the linear scanning profiles. The elemental spatial distribution can thus be specified. It is apparent 

that the brazed joint contains a continuous Ag-rich phase, a phase which is Cu-rich and the Cu3P phase. 

On the basis of the binary Cu-P phase diagram along with the atomic ratio of the microstructure of the 

brazed joint, it can be stated that the reaction layer may comprise both Cu3P and CuP2 phase [9], 

However in this study there was no evidence of the formation of CuP2 phase at the brazed joint. In this 

case it can be seen from the binary phase diagram for Ag-Cu that there was no intermetallic phase, 

thus confirming that Ag-Cu formed a solid solution and indicating that brazing can take place without 

the formation of an intermetallic phase. In the formation of Cu3P, it is was occurred from phosphorus 

atoms in filler metal diffused towards the interface, and copper atoms in base material diffused 

towards the interface, thus leading to the formation of Cu3P compound. 

 

Figure 2. Brazed joint morphology (a-b), including (b) marked zones of the chemical composition for 

a brazed joint under conditions of 620°C, 30 minutes, and 12.173 kPa. 
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3.3. The influence of parameters for brazing temperature, holding time and loading pressure upon 

joint microstructure 

Figure 4 (a, f and k) presents the SEM micrographs of the brazed copper joints which used Ag-Cu-P 

filler metal. The temperature, holding time, and loading pressure varied in each case. It is also 

apparent that the joint between the Cu substrate and the filler metal contained micro-voids throughout 

the interface, calling into question its efficiency, as shown in Figure 4 (a). This occurred as a result of 

the conditions: at a low temperature, short holding time, and low loading pressure (580°C for 10 min 

and 8.656 kPa), it is not possible for the filler alloy to fully react with the copper sheet to create the 

continuous reaction layer. When the solid-state brazing conditions are improved (600°C for 30 min 

and 12.173 kPa) the voids become less significant and it is possible to distinguish a continuous 

reaction layer, as shown in Figure 4 (f). When the conditions are further intensified (620°C for 30 min 

and 12.173 kPa) the cracks disappear altogether, as shown in Figure 4 (k). Furthermore, the grain size 

of the region phase showed clear growth, and thus it can be inferred that the filler metal was able to 

fully react with the copper to create the continuous reaction layer, and consequently to form a Cu3P 

compound (dark gray) of a suitable thickness. 

 

 

Figure 3. Distribution images of the corresponding elements area for brazed copper joints using Ag-

Cu-P filler metal at 620°C for 30 min and 12.173 kPa: (a) Linear scanning profiles; (b) Ag phase 

distribution map; (c) Cu phase, and (d) Cu3P compound. 

 

Figure 4.  SEM micrographs showing the linear scanning profile and profiles of the EDS 

compositional maps of the brazed copper joint using Ag-Cu-P filler metal under varying solid-state 

brazing conditions: (a-e) 580°C for 10 min and 8.656 kPa; (f-j) 600°C for 30 min and 12.173 kPa, and 

(k-o) 620°C for 30 min and 12.173 kPa.  
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Figure 4 (b-e, g-j and l-o) presents maps showing EDS composition and linear scanning profiles for 

brazed joints formed under varying solid-state brazing conditions. The images show the formation of 

Cu-rich and Ag-rich phases along with Cu3P upon the brazed joints. The details of the elemental 

composition of the results from different brazing conditions are provided in Table 1 and can be seen 

also in Figure 4 (l-o). The result confirms that the alloy primarily consists of Cu-based solid solution, 

Ag-based solid solution and Cu3P compound. Figure 5 (a-d) shows the XRD pattern of filler metal and 

brazing specimens after solid-state brazing with copper sheet on the experimental brazing variables 

encompassed the brazing temperature, holding time and loading pressure at 580°C for 10 min and 

8.656 kPa, 600°C for 30 min and 12.173 kPa and 620°C for 30 min and 12.173 kPa respectively. 

Obviously, Cu3P is formed from the beginning of forming process of the filler metal. However, after 

solid-state brazing at high temperature (620°C for 30 min and 12.173 kPa) grains of Cu3P phase were 

larger. 

 

3.4. The mechanical characteristics of the joints 

Evaluation of the tensile shear force was carried out in order to determine the properties of the brazed 

joint. The various brazing conditions involved temperatures of 580°C, 600°C, and 620 °C; 10 min, 20 

min, and 30 min, and 4.713 kPa, 8.656 kPa and 12.173 kPa. There is a clearly apparent increase in the 

tensile shear force as the temperature, holding time, and loading pressure are increased. Analysis of 

the microstructure revealed that voids were present in the joints at low temperatures, short holding 

times, and low loading pressure, indicating relatively weak bonding (Figure 4 (a and f)). At higher 

temperatures and loading pressures with a longer holding time, the voids disappear and stronger joints 

are the result.   
In the confirmation test process, a total of six samples were brazed. Table 2 shows the outcome in 

the high brazing sample, representing the optimal brazing conditions. The tests confirmed that all 

samples brazed under optimal conditions achieved tensile shear force results which are considered to 

fall within the range of higher tensile shear force. 

 

Figure 5.   XRD pattern of filler metal and brazed joints after solid-state diffusion brazing under 

variable of brazing temperature, holding time and loading pressure respectively. (a) XRD pattern of 

filler metal, (b)  XRD pattern of  brazed joint after solid-state brazing at 580°C for 10 min and 8.656 

kPa, (c) 600°C for 30 min and 12.173 kPa and (d) 620°C for 30 min and 12.173 kPa. 
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4. Conclusions 

The current study assessed the properties and microstructure of the brazed joints between copper 

sheets and Ag-Cu-P filler metal which are potentially employed in the production of LMA devices. 

The process involved solid-state brazing at temperatures of 580°C, 600°C and 620°C, with loading 

pressure at 4.713 kPa, 8.656 kPa, and 12.173 kPa, and holding times of 10 min, 20 min, and 30 min. 

The findings allowed certain conclusions to be proposed, as described below:  

To obtain the greatest tensile shear force on average, the parameters were set as follows: brazing 

temperature 620°C; holding time 30 minutes; loading pressure 12.173 kPa. This resulted in average 

tensile shear force of 736.27 N. The analysis using EDS and SEM showed that it was difficult to form 

a reaction layer between the copper sheet and the Ag-Cu-P filler metal at the lower temperatures of 

580°C and 600°C, lower holding time of 10 min and 20 min and lower loading pressure of 4.713 kPa 

and 8.656 kPa leading to gaps in the joint and low shear force. However, under optimal conditions 

(brazing temperature 620°C; holding time 30 minutes; loading pressure 12.173 kPa) Cu3P phase was 

produced and apparent at the brazing joint between the filler metal and the copper sheets, leading to 

much better results on tensile shear force and a stronger joint. 
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Table 2. Testing to confirm the optimal solid-state brazing conditions. 
Specimen (no.) Tensile shear force (N) Specimen (no.) Tensile shear force (N) 

1 743.771 4 744.565 

2 746.838 5 713.015 

3 731.611 6 737.842 


