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Abstract. The paper presents a mathematical model of attenuating oscillations of manometric 
tubular springs (MTS) taking into account the rigid tip. The dynamic MTS model is presented 
in the form of a thin-walled curved rod oscillating in the plane of curvature of the central axis. 
Equations for MTS oscillations are obtained in accordance with the d'Alembert principle in 
projections onto the normal and tangential. The Bubnov-Galerkin method is used to solve the 
equations obtained. 

 
 
1. Introduction 
The use of mechanical pressure gauges in some cases remains uncontested and is regulated by 
regulatory documentation. The need to carry out activities aimed at increasing the vibration protection 
of MTS serving as sensitive elements of mechanical pressure gauges is caused by an increase in the 
requirements for the reliability and precision of instruments for measuring pressure. The main methods 
of protection are detuning from resonance frequencies and vibro-damping with fluid. Studies in this 
area are performed in [1-4]; however, in these works the effect of the MTS tip, which significantly 
affects frequency characteristics, is neglected. 
 
2. Materials and methods 
The tips can be used to increase the stroke of elastic elements [5-6]. 

Typically, for a number of springs, the same tips are used at different pressures, so depending on 
the thickness of the tube, the mass ratio of the tip and the mass of the tube varies over a wide range 
(line 2 of Table 1). 

A comparison of the experimental and calculated values of the frequencies of free oscillations [1] 
showed that deviations may be from 10 to 80% (see line 5 of Table 1) and increase with increasing tip 
mass. 

In [2], the mass of the tip is considered by introducing the decreasing coefficient of the frequency 
of free oscillations determined by the experimental method. The influence of the mass of the tip on the 
parameters of the oscillations attenuation and, as a result, on the attenuation rate of oscillations has not 
been theoretically studied to date. 

The mathematical model used allows us to take into account the influence of the viscosity of the 
damping fluid and the mass of the MTS tip and is represented as a curved rod that oscillates in the 
plane of curvature of the central axis (Fig. 1).  
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Table 1. Value of frequencies of natural oscillations of steel springs 
№ Rated pressure, 

МPа 
0.1 0.4 1.0 2.5 4.0 6.0 10.0 

1 Wall thickness, mm 0.2 0.3 0.4 0.6 0.7 0.8 1 
2 ���� �����	
  0.965 0.523 0.197 0.132 0.116 0.101 0.08 

3 Frequency 
 (experiment), Hz 

49.3 95.5 157 197 234 251 277 

4 Frequency 
(calculation without 
regard to the tip), 

Hz 

89.3 160 198 235 274 275 301 

5 Deviation, % 81.1 67.5 26.1 19.3 16.6 9.6 8.7 

6 Frequency 
 (calculation with 
regard to the tip), 

Hz 

52.8 101.1 161.1 213.5 237 264.3 290.3 

7 Deviation, % 7.1 5.9 2.6 8.4 1.3 5.3 4.8 

 

 
Figure 1. Curved rod. 

 
Figure 2 shows the tangential - τ and the normal - n displacement of an infinitesimal element. 

 
Figure 2. Infinitesimal rod element. 
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where q – the force of resistance to movement in a fluid (only the normal component is taken into 
account): �� = ���; �� = 0); � – the coefficient of damping fluid resistance; � – the transverse force; 
� – the longitudinal force; М – the bending moment; R – the radius of curvature of the central axis; 
�� – the angle of an infinitesimal element cut from a curved rod. 

Projecting all the forces, including the forces of inertia, on axes τ and n, let us obtain the system of 
equations of the MTS motion: 

���� ���
��� + �1 + �

 ! � ��
�� − ��

 �� + �
 = 0, 

���� ��$
��� − �

 − ��
 �� = 0, 

(1) 

where ���� – the apparent density (mass). 
The following boundary conditions are imposed on this system of differential equations. At the 

base of the manometric spring, at � = 0, the longitudinal and transverse displacements, as well as the 
angle of rotation of the tube cross-section, are zero (the main boundary conditions). 

At the free end (� = %), near the concentrated mass, the MTS distortion can be neglected. This 

assumption leads to the following boundary conditions at the free end: ��%� = 0; ��%� = −��
&'�
&�' ;  

��%� = −��
&'(
&�'  (natural boundary conditions). 

The initial conditions do not matter, since only the frequency characteristics of MTS are 
determined. 

The problem is solved by the Bubnov-Galerkin method. Displacements u and w are given as: 

$ = )*���+*��� + )����+���� + ⋯ )����+���� = - )����+����
�

�.*
 

� = /*����*��� + /��������� + ⋯ /��������� = - /���������
�

�.*
 

(2) 

where +*, +� … +�, �*, �� … �� – unknown functions of variable t;            
       )*, )� … )1 , /*, /� … /1 – basic functions of variable φ. 

Power functions are used as basis functions: 
)���� = ��; 3 = 1, … , 4 .

/7��� = �78*; 9 = 1, … , 4.  (3) 

Such system of functions is complete; the functions are linearly independent and satisfy the main 
boundary conditions.  

To estimate the convergence of the solution, the authors studied the change in the values of 
oscillations attenuation parameters for a different number of functions included in the displacement 
approximation. 

To obtain satisfactory results, it was sufficient to preserve five basic functions. 
Calculations of natural oscillations frequencies taking into account the rigid tip are given in lines 7 

and 8 of Table 1. As can be seen from the table, deviation from the experimental data is from 4 to 8%, 
which indicates a good accuracy of the results obtained. 

The results of studies of the influence of the tip mass on the frequency of attenuating oscillations 
and the oscillation attenuation coefficient are presented as surfaces depending on the viscosity of the 
damping fluid and the mass of the tip for a sample with parameters R=30mm, γ, =30 degrees, 
h=0.2mm, а=5 mm, 2 mm (Fig.3).  
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а) Frequency of oscillations b) Coefficient of attenuation 

Figure 3. Changes in the oscillations attenuation parameters 
 

Analysis of the presented dependences shows that an increase in the mass of the tip leads to a 
decrease in the frequency of attenuating oscillations and a slight decrease in the oscillation attenuation 
coefficient.  

A decrease in the attenuation coefficient leads to an increase in the attenuation rate; the results of 
the investigation of springs with a tip and without it are shown in Fig.4 

 

  
а) Without a tip b) With a tip 

Figure 4. Amplitudes of oscillation attenuation 
Since the change in the mass of the tip affects the oscillation process, the limiting value of damping 

fluid viscosity must undergo a change, at which aperiodic motion begins to take place. Below, Table 2 
provides viscosity values at which aperiodic movement begins with and without a tip. 

 
Table 2. Dynamic viscosity value 

Dynamic viscosity value, Pas 
Sample number 

1 2 
Without a tip 1000 1200 

With a tip 1200 1400 
Deviation, % 16.7 14.3 

 
The obtained results show that as the mass of the tip increases, the limiting value of dynamic 

viscosity decreases, but it is possible to increase the mass only to a certain limiting value. Table 3 
shows mass values as a percentage of the MTS mass at which the system will cease to oscillate. 
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Table 3. Dynamic viscosity value 
Sample number 1 2 
МТS mass, g 2.84 13.23 
Tip mass, g 13.3 66.7 
Tip mass, % 368.3 404.2 

 
3. Conclusion 
Numerical experiments confirm a significant influence of the tip mass on the MTS oscillation process. 
An increase in the mass of the tip leads to an increase in the total mass of the system, and this in 
essence is one of the methods of vibration protection - vibro-damping. Thus, an increase in the mass of 
the tip can be used as an independent method of vibration protection, and in combination with the 
method of detuning from resonance frequencies and vibro-damping of oscillations with a fluid, 
thereby increasing the effectiveness of protection. 
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