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Abstract. Direct chill casting is one of the methods used in industry to obtain good microstructure 

and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal.  

In this study, we offer the use of electromagnetic interaction to modify melt convection near the 

solidification interface. Solidification under various electromagnetic interactions has been widely 

studied, but usually at low solidification velocity and high thermal gradient. This type of 

interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus 

leading to improved material structure and properties.  Realization of experimental small-scale 

crystallizer and electromagnetic system has been described in this article.  

1.  Introduction 

Aluminium alloys microstructure and physical properties may vary significantly depending on 

solidification velocity and temperature gradient at the solidification interface, and melt flow near 

solidification interface as well. In industry, aluminium alloys for extrusion and forging is prepared by 

using crystallizers, which ensure controlled solidification velocity and oriented solidification front 

direction [1]. There are several technical solutions how to achieve rapid solidification up to 10 mm/s and 

large diameter ingots. One of the most prevalent is direct chill casting, where heat is evacuated by spraying 

oil and water at the solid part of the ingot [2]. It has been demonstrated that pulsed or AC electromagnetic 

interaction during directional solidification can significantly modify solidification structure of aluminium 

alloys [3]. Electromagnetic force may influence the melt flow in several ways. Static magnetic field has 

two effects. Firstly, it damps the melt flow perpendicular to magnetic field lines, and, secondly, magnetic 

field interacts with electric current near the solidification interface and drives melt convection [4,5] and 

can deform the solidified dendrite arms [6]. Electric current may arise because of thermoelectric effect 

between solid and liquid phases in presence of temperature gradient along solidification interface [7] or 

current can be directly the melt, or induced by the alternating magnetic field. Diverse types of melt flow 

give different effects on solidification structure. For example, large scale flow may change solidification 

interface shape and influence the structure difference between core and outer crust of the ingot [8]. 

Whereas small dendrite-scale flow may succeed composition homogeneity and alter dendrite morphology. 

However, there is no direct link between melt convection during solidification and solidification 

microstructure, thus for each alloy and electromagnetic interaction series of experiments should be done. 
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2. Experimental setup 

Small scale direct chill casting experimental setup has been developed in MHD technology laboratory of 

Institute of Physics University of Latvia. Principal scheme of experimental setup is shown in Figure 1. 

Aim of the experimental setup is to test the possibility to influence solidification structure and impurity 

distribution in aluminium ingot by various electromagnetic interactions. Vertical DC magnetic field is 

applied by the permanent magnet system placed around the solidification zone. Solidification interface 

takes place in graphite tube at the middle of permanent magnet system where field induction reaches 

maximal value. Just below graphite tube the solid part of the aluminium rod is cooled by water spray. DC 

magnetic field interacts with injected electric current in the aluminium near the solidification interface.  

 

 

Figure 1. Principal scheme of the experimental setup. 

3.  Results and discussion 

For the first experiments, it is planned to apply axial electric current through the solidification interface. 

In this case in the bulk of the solid and liquid parts magnetic field and current are parallel, thus there is no 

Lorentz force. However, at the dendritic solidification interface current redistribution takes place due to 

significant difference in electric conductivities between solid and liquid phases. It has been shown by 

previous work that such type of interaction may induce liquid phase flow at dendrite scale and modify 

solidification microstructure and segregation of the components. Parameters of experimental system has 

been chosen to induce electromagnetic forces in the melt comparable to similar studies described in 

literature [9].  

In this work planned current density is starting from 1 A/mm2. Electric current at the dendritic 

solidification interface is redistributed as shown in Figure 2. In this case current component perpendicular 

to magnetic field creates Lorentz force and local convection vortices around each dendrite arm is created. 

Typical primary dendrite scale of aluminium is 100 µm. Melt convection velocity can be estimated by 

balancing electromagnetic and viscous forces in simplified Navier-Stokes equation [9]. For aluminium 

0.5 T axial magnetic field would give characteristic velocity of few centimetres per second, which could 

have significant effect at solidification velocities 1-3 mm/s. 
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Figure 2. Electric current distribution at the dendritic solidification interface (B-magnetic field 

induction, j-current density, f-force density).  

Permanent magnet system aimed to achieve 0.5 T is assembled from segment magnets. Iron yoke to 

optimize magnetic flux as shown in Figure 3(a). Inner cavity of magnet system is 80 mm in diameter and 

axial magnetic field induction at the middle is about 0.45 T as shown in Figure 3(b) by comparing 

measurements and numerical model. Low carbon soft iron yoke guides magnetic flux with minimal 

resistance thus magnetic field induction in the magnet is maximized. For these N42M type magnets 

maximum work temperature is 100 oC, thus magnets are protected from excess heat from hot zone by 

copper screen which is water cooled. Thus, magnets can be easily placed within several centimetres from 

molten aluminium. Permanent magnet systems can be designed for many applications, such as liquid 

metal pumps and stirrers, couplings and bearings, sensors, motors etc. [10,11] Halbach array principle is 

used in systems to increase and improve magnetic field distribution by creating permanent magnet arrays 

from many smaller magnets. Ways to optimize magnetic flux has been described by several authors [12, 

13].  

   

 

Figure 3. Magnet system: a) Assembled permanent magnet system; b) axysymmetric Comsol model 

(Magnetic field induction) Black arrows indicate magnetization direction. 
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Comparison between Comsol 5.0 numerical model and gaussmeter measurements shown in Figure 4. 

demonstrates that numerical calculations are accurate. Axysymmetric stationary model is solved to 

calculate the magnetic flux density. Yoke is assumed to be soft iron with saturation magnetization of 2.1 

T, remanent flux density of the NdFeB magnets is 1.4 T. Triangular mesh consisting of 46000 elements 

is used for calculations. Difference may be explained by the facts that there are small gaps between magnet 

pieces and that magnetization is not entirely homogeneous. In our case ingot diameter is 10 mm thus 

inhomogeneity of magnetic field does not play a crucial role. If such magnetic field is provided by 

electromagnet, then number of ampere-turns necessary can be estimated from finite coil magnetic field 

induction formula: 

𝐵𝑧(𝑧) =
𝜇0𝑁𝐼

√ℎ2 + 𝑅2
 

 
Where h is height of the magnet, R is coil radius, μ0 is vacuum permeability. For our case (h=10cm, R=4 

cm, Router=9 cm) we get necessary ampere-turns IN=30 kA turns. Such electromagnet would be difficult 

to make and operate thus in this case permanent magnet assembly is definitively an advantage. 

 

 

 

Figure 4. Comparison of numerical model and measurements. Magnetic field induction: a) Along axis 

of the magnet system; b) along radial position at the middle height. 

NdFeB magnets with remanent flux density of 1.4 T are becoming more available nowadays, even in 

custom shapes. Limitation is size in magnetization direction which is around 5 cm. Larger magnet system 

with 20 cm diameter can be built in the same manner. Such system would require 8 liters of NdFeB 

magnets and 2 cm thick iron yoke to prevent oversaturation. Estimated price of the magnets would be 

around 3000 Eur. Total weight of the magnet system with yoke would be around 80 kg. Magnet system 

sizes are shown on Figure 5(a). Calculated flux density along z axis and along diameter are shown in 

Figure 5(b). More than 0.4 T can be achieved in 20 cm diameter magnet. With air filled electric coil this 

would require 71 kA turns. Thus, even for a larger application permanent magnet assembly is reasonable 

alternative for complicated electromagnet. 
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Figure 5. Magnet system for 200 mm diameter axial field assembled form segment magnets and iron 

yoke: a) cross section of the magnet system (with magnetization directions); b) magnetic field induction. 

4.  Conclusions 

Direct chill casting is one of the promising technologies for high quality aluminium alloy production 

maintaining certain properties. Our current work is aimed to improve existing technology by investigating 

the potential applications of electromagnetic interaction to the process. Electromagnetic interaction on 

liquid aluminium is perspective because of relatively low melting temperature, high electrical conductivity 

and low density of the material. Thus, electromagnetic elements can be placed close to the liquid metal 

and smaller magnetic field amplitude is necessary to achieve sufficient force density in the melt. Designed 

permanent magnet assembly for DC field has shown its potential and in the future permanent magnets 

could replace superconducting magnets in several applications where moderate field is necessary. 
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