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Abstract. The paper considers a new approach of regression modeling that uses aggregated 

data presented in the form of density functions. Approaches to Improving the reliability of 

aggregation of empirical data are considered: improving accuracy and estimating errors. We 

discuss the procedures of data aggregation as a preprocessing stage for subsequent to 

regression modeling. An important feature of study is demonstration of the way how represent 

the aggregated data. It is proposed to use piecewise polynomial models, including spline 

aggregate functions. We show that the proposed approach to data aggregation can be 

interpreted as the frequency distribution. To study its properties density function concept is 

used.Various types of mathematical models of data aggregation are discussed. For the 

construction of regression models, it is proposed to use data representation procedures based 

on piecewise polynomial models. New approaches to modeling functional dependencies based 

on spline aggregations are proposed. 

1.  Introduction 

The linear regression analysis is often used to discovery dependencies of the empirical data. Properties 

of empirical data including the type and level of uncertainty significantly affect on the results of the 

simulation. It is well-known, that the random uncertainty concept addressed by probability theory 

plays a fundamental role to study data uncertainty [1, 2]. 

Aggregation is quite a popular method of converting big data [3-6]. For example, the application of 

the histogram allows to reduce dimension of the data set and level of uncertainty and to significantly 

increase the efficiency of numerical calculations. It is important to note that the histograms are 

examples of the symbolic data using in the Symbolic data analysis [1, 4, 7]. 

Symbolic Data Analysis and Data Mining use the histograms to study a variety of different 

processes and are applied to modeling the variability of quantitative characteristics. 

Histogram data models and histogram regression models based on the Symbolic analysis is a new 

important direction to discover knowledge in a data base. Billard L., Diday E. proposed the symbolic 

data type named histogram-valued variables to employ for regression modeling [1, 7]. 

This problem becomes more complicated if large amounts of data are processed. In this case it is 

useful to look at the empirical data in an aggregated form. Aggregation is a popular method of 

converting data. For example, the application of the histogram allows to reduce dimension of data set 

and level of uncertainty and to significantly increase the efficiency of numerical calculations. It is 

important to note that histograms are the examples of symbolic data used in the Symbolic data analysis 
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[7]. Symbolic Data Analysis and Data Mining use histograms to study a variety of different processes 

and are applied for modeling the variability of quantitative characteristics. Histogram data models and 

histogram regression models based on the Symbolic analysis is a new important direction to discover 

knowledge in a data base.  

In our study we consider a new approach to regression modeling using input data aggregation. To 

develop our approach for performing efficient aggregation we employ piecewise polynomial 

aggregation functions, including piecewise linear functions and piecewise constant functions. 

Histogram is a good example of piecewise constant functions of which are perfectly employed in our 

study.  

To examine the structure of data aggregation we use the probability density functions (PDF). The 

concept of the mathematical aggregation functions is used to the regression modeling. To illustrate this 

we will regard the spline aggregation function in more detail. This approach will allow to employ the 

density function models as input and output data. It is of further importance that, the data uncertainty 

is studied to identify the relationship between the input and output characteristics when the input 

probability density functions are unknown. Thus, in order to describe any specific PDF we need to 

consider their spline interpolation.  

In this work we propose a new linear regression model named a PDF-valued variable regression. 

The abbreviated form of the regression model is called a Distributions Regression. If we use a spline 

aggregation model it is named a PDF-spline valued variable Regression Model and a Distributions 

Regression in shot. The following statements confirm the justification of PDF-spline models. The 

application of the spline procedures allows big data aggregating reduce the level of uncertainty and to 

significantly increase the efficiency of numerical calculations. These splines allow considerably 

accurate representions of the arbitrary distribution.  

To demonstrate the degree of the relevance of the proposed methods to reality, we developed a 

theoretical study and provided numerical examples to illustrate it. With this we propose a conclusive 

discussion of this approach applicability to the uncertainty treatment and big data processing. The 

comparison of NPA and Monte Carlo method showed good agreement of the results. At the same time, 

numerical experiments demonstrate that the PDF arithmetic is more than hundred times faster than the 

Monte Carlo method [8-10]. As a result, the NPA approach can be successfully applied for solving 

computational and engineering problems [9,10,11]. 

2.  Reliable wstimates of the accuracy of aggregation 

In those cases where data can be interpreted as frequency distributions, it is advisable to use methods 

for constructing the probability density function for aggregation. It is remarkable that the histogram 

stood as the only nonparametric density estimator until the 1950s, when substantial and simultaneous 

progress was made in density estimation and in spectral density estimation. During the following 

decade, several general algorithms and alternative theoretical modes of analysis were introduced by 

Rosenblatt, Parzen, and Cencov [12].  

Next, consider using Richardson's extrapolation to improve the accuracy of the kernel estimator 

[13].  

The basic kernel estimator may be written compactly as [12]  
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where   is a random variable with probability density function ( )f x .  

Then expected value 

 ˆE[ ( )] E[ ( )]hf x K x    

 

and variability 

 
1ˆVar[ ( )] Var[ ( )]N hf x K x
N

      

 

Suppose that the kernel K  satisfies the requirements  
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Denote  
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Define ( )hf x  as follows 
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Let we apply the Richardson’s extrapolation to ( )hf x  and 
2 ( )hf x  [7]. In the next stage, we 

multiply (1) on 1/4 to subtract the result from (2). Excluding 
2 2 ( ) 2h f x    from (4) and (5), we get  

 
2 44 1

( ) ( ) ( ) ( )
3 3

h hf x f x f x O h     

Noting that we have constructed the approximation to the function ( )f x   

 
24 1

ˆ ˆ( ) ( ) ( )
3 3

h hh

corf x x xf f    (3) 

with the accuracy 
4( )O h .  

In figure 1 we represent numerical example. The solid line is exact probability density function f(x), 

a − kernel estimator of probability density function, b − correction of kernel estimator function by 

Richardson’s extrapolation. 

 

 

 
(a)    (b) 

Figure 1. Improving the accuracy of the probability density function estimation. 
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Thus, successively setting z  , we obtain the values 
4( ) ( ) ( )h

cor i if x f x O h  . Further, using the 

obtained values, we can construct systems of linear algebraic equations for constructing a cubic spline 

[14]. 

 

On the other hand, applying the Runge rule, we can obtain the estimate [11] 

 

 
2 2 2( ) 2( ( ) ( )) (3 ) ( )h hf x f x f x h O h      

or  
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Thus, a posteriori estimate is constructed for the second derivative of the density function. This 

allows one to obtain an estimate for the accuracy of the approximations constructed. 

 

3.  Spline aggregation 

A spline is a sufficiently smooth polynomial function that is piecewise-defined, and possesses a high 

degree of smoothness at the places where the polynomial pieces connect (which are known as knots). 

We will consider the probability density of the random variables as an approximated spline. 

Prior to consideration of spline aggregation, we propose study of mathematical models applicable 

for the representation of splines and will discuss the interpolation questions with their application.  

 

Let 0 1 2{ }nx x x … x     
 be mesh and interpolation conditions  

 
( ) ( ) 0i is x f x i … n     

 
 

Where boundary conditions are given as  

 

 0( ) 0 ( ) 0ns x s x    
 

The cubic spline on a mesh 
{ }ix

 with step 1max( ) 0i ih x x i … n     
 satisfies the estimate  

 

                                             
4 (4) 0 1 2f s fh
                                                (5) 

 

The task of the spline construction is reduced for solving a system of linear algebraic equations 

with a tridiagonal matrix [14]  

 

   1 12j j j j j jm m m d     
         (6) 
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where 
( )i im s x

. As a result, a cubic spline on the intervals 1[ ] 1j jx x j N    
 will have the 

following representation [8]:  
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Let consider the spline approach to build regression model with the Distributions-valued variables. 

This approach is useful due to the following reasons. Underlying of this approach is the notion of the 

spline. The spline can be regarded as a mathematical object that is easy to describe and calculate the 

mathematical procedures and operations, in the process of maintaining the essence of data frequency 

distribution.  

Since the spline is a piecewise polynomial function then it can be regarded as a data aggregation 

function in aggregation issues. Aggregation function performs numerical calculations on a data set and 

returns the spline values. Splines are useful for data uncertainty analysis due to fact that they 

adequately represent the random distribution of random variables.  

Despite its simplicity, the spline also covers all possible ranges of probability density function 

estimation. Simple and flexible spline structure greatly simplifies their use in numerical calculations 

and it has a clear visual image, which is useful for analytical conclusions. It is important to note that 

the construction of regression models with aggregated inputs require the use of appropriate numerical 

procedures. To this end, we consider numerical probabilistic analysis. We propose to use of the 

numerical probabilistic analysis to compute the arithmetic operations for the aggregated data and to 

apply for regression modeling. 

Consider the problem of aggregating data by splines. For this purpose, we construct a spline s 

approximating the density function f, so that the estimate 

 
4f s Ch     

 

Thus, successively assuming z  , we obtain the values 
4( ) ( ) ( )h

cor i if x f x O h 
 and the system 

of linear algebraic equations (8) for constructing a cubic spline. To improve the reconstruction 

accuracy of probability density at the point z  we use the combination of kernel assessments with the 

parameters h  and 2h .  

As an evidence we refer to Schweizer who states, that “distributions are the numbers of the future” 

[15]. Thus, instead of simplifying them, it seems better to propose methods which deal with 

distributions directly. In order to do this, one has to determine how to represent the observed 

distributions.  

In our study we propose to represent them by using a piecewise polynomial aggregation function, 

as long as it offers a good tradeoff between simplicity and accuracy.  

4.  Distributions Regression 

Consider a linear model  

0

1

n

i i

i

Y a a X 


   
 

where iX
,

1i … n  
 are independent predictor variables, Y  is a dependent variable,   is an error. 

From the observed values of jY
 i jX    after the aggregation of the densityY , iX

 are represented by 

splines: yS
, iS

.  

We shall seek the unknown parameters ia
, 

0 1i n  
 starting from the minimum of the 

functional  
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By virtue of the independence of iX
, numerical operations on density functions can be used to 

calculate the functional 0 1( )na a … a   
. The minimization of the functional 0 1( )na a … a   

 can be 

carried out by the method of steepest descent.  

 Let us consider model problem n=2 

 

0

1

n

i i

i

Y a a X 


   
 

 

For numerical realization, 1X
, 2X

 were generated as sums of random variables with an Irvine-

Hall distribution n = 3 and shifted by 1 and 2, respectively,   with probability density function 
2( 2 1) (2 2 1)x x       with support 

[ 0 5 0 5]   
.  

The variable Y  was constructed as follows 1 2Y X X   
.  

The minimization of the functional 0 1 2( )a a a  
 was carried out by the method of steepest 

descent. For 0 0 089a   
, 1 1 031a  

, 2 1 029a  
, the value 0 1 2( )a a a  

 did not exceed the value 
30 3 10  .  

Thus, a numerical example showed the possibility of using distributions regression.  

5.  Conclusion 

Although there are many ways of data aggregation, including simple average, we argue that the use of 

piecewise linear and piecewise polynomial aggregation functions will offer a more informative 

representation of the variability in the data, than other forms of data aggregation. To prove their thesis, 

we considered the aggregation procedure based on the histogram time series. Using these types of data 

aggregation for preprocessing and regression modeling you contribute to the reliability of the study of 

natural systems and processes. The spatial and time aggregation procedures help to reduce the amount 

of computation in data processing and are an important basis for the extraction of useful knowledge 

from large volumes of data. Developed methods reduce the level of uncertainty in the information 

flow; significantly reduce the processing time and the implementation of numerical procedures. This 

approach allows to the mode of interactive visual modeling to provide the necessary data for 

operational decision making under remote surveillance techniques and distributed object systems. In 

concluding the discussing about the applicability of this approach to practice we say about the 

advantage for uncertainty treatment and big data processing. Using the proposed model, applications 

with real and simulated data are presented. 
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