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Abstract. Accelerated degradation testing (ADT) is frequently conducted in the laboratory to 

predict the products’ reliability under normal operating conditions. Two kinds of methods, 

degradation path models and stochastic process models, are utilized to analyze degradation 

data and the latter one is the most popular method. However, some limitations like imprecise 

solution process and estimation result of degradation ratio still exist, which may affect the 

accuracy of the acceleration model and the extrapolation value. Moreover, the conducted 

solution of this problem, Bayesian method, lose key information when unifying the 

degradation data. In this paper, a new data processing and parameter inference method based 

on Bayesian method is proposed to handle degradation data and solve the problems above. 

First, Wiener process and acceleration model is chosen; Second, the initial values of 

degradation model and parameters of prior and posterior distribution under each level is 

calculated with updating and iteration of estimation values; Third, the lifetime and reliability 

values are estimated on the basis of the estimation parameters; Finally, a case study is provided 

to demonstrate the validity of the proposed method. The results illustrate that the proposed 

method is quite effective and accuracy in estimating the lifetime and reliability of a product. 

1. Introduction 

For today’s highly reliable products, it is difficult to estimate their field reliabilities due to the 

extremely long test time under field conditions. Therefore, ADT is frequently conducted in the 

laboratory for predicting the products’ reliability under working conditions. The main idea of ADT is 

to test products under harsh environmental stresses to accelerate the performance degradation on the 

condition of constant failure mechanism and obtain sufficient data for reliability analysis in a short 

time, lower costs and higher efficiency. So it has many applications, such as the reliability analyses of 

liquid-crystal display (LCD) [1], light-emitting diode (LED) [2] and batteries [3][4]. 

The core method of ADT-based reliability estimation is to find a suitable degradation model which is 

capable of incorporating the relationships between the applied stresses and the product’s degradation 

[5]. The existing degradation analysis methods can be categorized into two broad classes [6], 

degradation path models and stochastic process models which are widely used in different 

combination and some extension. 

Due to the stochastic process models can describe the temporal variation of the degradation process in 

a finite time interval, they have gained more attention from researchers, especially the typical ones like 

Wiener process, Gamma process [7][8]. Because Wiener process has a higher generalization and a 

strong ability to describe a nonlinear degradation process. It gets more intensive applications. 

Moreover, products in practice, their degradation increment in an infinitesimal time interval can be 
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viewed as an additive superposition of a large number of small external effects, while Wiener process 

with its normally distributed increment can perfectly satisfy this property [6].  

However, there are still some limitations need to consider when adopting Wiener process in ADT. 

Usually, when combining Wiener process and acceleration model to estimate the degradation process, 

the parameters are hard to calculate. Traditional estimation method fit degradation ratio with least 

square method and maximum likelihood estimation algorithm. But the solution process and the 

estimation result of degradation ratio are imprecise which may affect the accuracy of the acceleration 

model and the extrapolation value. The Bayesian method is proposed to solve this problem for its great 

capability of data fusion and the ability of parameter inference. In literature, Wang [9] combine 

Bayesian inference Gamma process with ADT to predict lifetime. Xu [10] propose a fully Bayesian 

approach to deduce parameters in SSALT. The data processing in these literatures always follows the 

same pattern which is to unify the degradation data from different stress level into the unified data at 

the working stress level before estimation. The accuracy of degradation data and some key 

information may lose during the processing which may also affect the veracity. 

In this paper, a new data processing and parameter inference method based on Bayesian method is 

proposed to handle degradation data. The main idea of this method is to utilize the estimation values 

and processed data of previous stress level to contribute the estimation under next stress level. It can 

maximize the utilization of test information to gain the best result through update and iteration. It can 

also eliminate the deviation effect caused by data processing and improve the estimation accuracy. 

This method can be a useful tool to apply in ADT design optimization. 

The remainder of this paper is organized as follows. In Section 2, general degradation model based on 

Wiener process is introduced, and the reliability function is deducted. In Section 3, first, the initial 

value of degradation model is estimated, then the parameters of prior and posterior distribution under 

each stress level are obtained with data processing under every stress level. Finally, the reliability 

estimation value is calculated on the basis of the estimation values and parameters. In section 4, a case 

study is provided to demonstrate the validity of the proposed parameter estimation method as well as 

the reliability estimation method. Some conclusions were drawn in Section 5. 

2. Degradation model based on wiener process 

We assume that the degradation follows a Wiener process, then the degradation is modeled by the 

following 

0( ) = ( ) + ( ) +Y t B t d s t y                                                      (1) 

Where Y(t) is the performance degradation process of product, B(t) is the standard Brownian motion 

with the mean value of 0 and the variance of t, denoted as B(t)~N(0,t), σ is the diffusion coefficient, 

which is a constant and does not change with stress or time, y0 is a known initial value of product 

performance, and d(s) is the drift coefficient, which represents the degradation rate of product and is a 

function of stress. It can be used to combine degradation model and acceleration model. Suppose the 

acceleration model of degradation rate is given by 

( ) exp[ ( )]d s A B s                                                        (2) 

Where υ(s) is a given functions of stress factor s. then d(s) can be calculated by factor A and B and the 

relationship between stress and degradation data, the acceleration model, can also be built. 

Known from the property of the Wiener process, the degradation increment ΔY during the unit time 

Δt follows a normal distribution with the mean of d(s)·Δt and the variance of σ
2·

Δt i.e., 
2~ ( ( ) , )Y N d s t t                                                       (3) 

Let k be the failure threshold and the product fails when Y(t)-k<0 , then the first passage time t to the 

threshold k has an inverse Gaussian distribution. The probability density function of the first passage 

time t is 

   

2

0 0
0 23

[( ) ( ) ]
f ( ; ,k) exp{ }
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k y k y d s t
t y

tt  

   
 

                                    (4) 

Then the reliability function of t is given by 
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From the function above, we know that the key parameters for reliability prediction are d(s) and σ
2
. 

After these parameters are obtained, the reliability prediction can be made. 

3. Parameter and reliability estimation based on Bayesian method 

3.1. Estimation of the initial value of A, B 

We provide the method for estimating the unknown parameters in step stress accelerated degradation 

testing (SSADT). Suppose a set of stresses is S = (s1, s2 … sm) where m (m>2) is the number of stress 

levels, while the number of the degradation increment data under the each stress level is

 1 2, ,
ii i i inY y y y     , where i= 1…m. Then the Linear Regression Equation can be easily 

obtained by (1) and (2). 

  0( ( )) exp( )i iE y t A B s t y                                                   (6) 

 ln( ( )) ln( )i iE y B s A t                                                     (7) 

By fitting the degradation increment data Δyi under the each stress level si with (7), the initial value of 

A, B, which is A0 and B0 can be obtained. In addition, when the degradation data is hard to collect, A0 

and B0 can be estimated through the degradation history or engineer experiences and then updated with 

real time test data in the following test process. 

3.2. Data processing under s1 

The main idea of Bayesian method is to specify some prior probability, which is then updated to a 

posterior probability in the light of new, relevant data. That means the estimation under the next stress 

level can be contributed by the previous level. So, data under stress level s1 should be handled first. 

Known from the property of (3) and conjugate prior distribution theory that the product between the 

drift coefficient d(s) and time interval t  follows the normal distribution and the product between the 

diffusion coefficient σ
2
 and time interval Δt follows the inverse gamma distribution. Which is 

  2~ ( , )d s t N                                                             (8) 

2 ~ ( , )t IG b a                                                              (9) 

Where μ, τ are the mean value and the standard deviation of normal distribution, while a, b are the 

scale and shape parameter of gamma distribution. 

In terms of data  
11 11 12 1, , nY y y y      which is under stress level s1, the initial value of hyper 

parameters in (8) and (9) can be calculated. Known from the property of conjugate prior distribution, 

the calculation formula is given by 

 
1

2

1 1 1

1

1

2

n

j

j

a y Y
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                                                         (10) 
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Where 1Y  the mean of data under is s1, n1 is the number of the data, and a1, b1 are the scale and shape 

parameter of gamma distribution (9) while μ1, τ1
2 

are the mean value and the standard deviation of 

normal distribution (8) .Then known from the property of normal distribution the estimation value of 

d(s1)·Δt under s1 is 
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 1 1( )E d s t u                                                           (14) 

3.3. Prior and posterior distribution under s2 

Known from (2) and the initial value of A, B, which is A0 and B0, for si and sj the specific value of 

acceleration model is 

0( ) ( ) exp( (1 1 ))ij i j i jp d s d s B s s                                         (15) 

In terms of (8) one already know that the product between the drift coefficient and time interval under 

sj follows normal distribution, i.e. 

  2~ ( , )j j jd s t N                                                   (16) 

Then on the basis of normal distribution one can obtain 

    2 2~ ( , )i ij j ij j ij jd s t p d s t N p p                                     (17) 

Based on the property of Wiener process that σ is the diffusion coefficient, which is a constant and 

does not change with stress or time, so the distribution of σ
2·

Δt does not change as well. Then after the 

specific value is conducted, the hyper parameters calculated under s1 can convert to prior distribution 

of parameter under s2 with 

20 1a a                                                                  (18) 

20 1b b                                                                  (19) 

20 21 1u p u                                                               (20) 
2 2 2

20 21 1p                                                                (21) 

Where μ20, τ20
2
 are the mean value and the standard deviation of the prior distribution under s2, which 

is a normal distribution, while a20, b20 are the scale and shape parameter of the prior distribution under 

s2, which is a gamma distribution. 

As discussed above, the product between the drift coefficient and time interval still follows the normal 

distribution and the product between the diffusion coefficient and time interval follows the inverse 

gamma distribution as well. So the hyper parameter of posterior distribution is given by 

 
 2

2

2 2 21 1
2 2

2 20 2 2

12 2 1

1
( )

2 2 1

n

j

j

Y p Yn n
a y Y

n n n




  
     


                           (22) 

2
2 20

2

n
b b                                                              (23) 

Where a2, b2 are the scale and shape parameter of the posterior distribution under s2, n2 is the number 

of degradation data, and 
2Y is its mean value. 

Then the estimation value of σ
2·

Δt is 

 2 2
2

2

|
1

a
E t y

b
   


                                                 (24) 

Next, the mean value and the standard deviation of the posterior distribution under s2, which is μ2, τ2
2 

can be expressed as  
2 2

2 20 20
2 2 2

20

( )

1 ( )

y E t u
u

E t

 

 





  


 
                                             (25) 

2

2 2 2

20

1

1 ( )E t

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

 
                                                  (26) 

So the estimation value of d(s2)·Δt can be given by 

 2 2( )E d s t u                                                      (27) 

3.4. Prior and posterior distribution under si 
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The Prior and posterior distribution of si can be calculated the same as s2, so the solving process is 

established. Suppose the hyper parameters of posterior distribution under si-1 are ai-1, bi-1, μi-1, τi-1
2 

respectively. Then A0 and B0 can be updated by(7), and by further calculating with (15)(18)(19)(20)(21) 

the scale and shape parameter of gamma distribution, αi0 and bi0, as well as the mean value and the 

standard deviation of normal distribution, μi0 and τi0
2
, can be obtained. 

Finally, the hyper parameters of posterior distribution can be given on the basis of the hyper 

parameters of prior distribution, which are 

 
 

2

2 1 1

0

1 1

1
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2 2 1

in
i ii i

i i
i i ij i

ji i i
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a y Y

n n n
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  
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                            (28) 
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 ( )i iE d s t u                                                                (33) 

Where
1iY  ,

iY  are the mean value under si-1, si, respectively while ni-1, ni are the number of 

degradation data. μi, τi
2 

are the mean value and the standard deviation of the posterior distribution 

under si, while ai , bi are the scale and shape parameter of the posterior distribution under si. So, with 

the calculation above, the hyper parameters of posterior distribution under si and other parameters are 

fully obtained. 

3.5. Reliability estimation 

According to the parameter estimation method above, m estimation values of product between the drift 

coefficient and time interval under m stress levels are gained. It can be written as

     1 2( ( ), ( ), ( ))mU E d s t E d s t E d s t    . Then (2) can be transformed into  

 ( ) exp[ ( )]i iE d s t A B s t                                           (34) 

Next, from (34) the final value of A, B which is Â and B̂ , can be obtained by fitting with the least-

squares method, next the drift  coefficient can be expressed by plugging working stress s0 in (5) and 

the estimation value of σ
2
 under the last stress level can be marked as final estimation value 

2̂ . 

Finally, the reliability estimation value of product can be obtained. 

4. Case study 

In this section, we demonstrate the proposed model and the inferential method based on a numerical 

example. This example is used to demonstrate the validity and superiority of the proposed parameter 

estimation method. Suppose there is a temperature step-stress ADT applied to a product, where there 

are 4 test units and 4 temperature levels (60 ℃, 80 ℃, 100 ℃, and 120 ℃). The time of each level is 

1250, 750, 500 and 500 h, and the inspection time interval is 5 h. 

4.1. Degradation and acceleration model 

As the stress factor is temperature, the Arrhenius acceleration function is applicable, so  

d( ) exp[ / ]T A B T                                                          (35) 

Where T is the absolute temperature, A and B are the parameters. Suppose the degradation follows 

Winner process, then known from the discussion of section 2, the degradation increment ΔY during the 

unit time Δt is subject to a normal distribution with the mean of d(s)·Δt and the variance of σ
2·

Δt, 
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which is (3) and the reliability model is (5), Let the initial value of y0 be 100 and the failure threshold l 

be 40. 

4.2. Estimation of the initial value of A, B 

Based on the degradation data gathered from each temperature level (60 ℃, 80 ℃, 100 ℃, and 

120 ℃), the degradation increment data ΔY60, ΔY80, ΔY100, ΔY120 are obtained, respectively. Then (7) is 

applied to fit the degradation increment data. So the initial value of A, B, which is A0 and B0 is 

calculated. 

4.3. Prior and posterior distribution under each temperature level 

4 temperature levels are applied to the product, so let 60 ℃ be the initial stress, the calculation 

sequence is 60 ℃, 80 ℃, 100 ℃ and 120 ℃. 

4.3.1. Data processing under 60 ℃ 

Known from the property of conjugate prior distribution, (8) and (9) are chosen to be the form of the 

prior and posterior distribution of the product between the drift coefficient and time interval and the 

product between the diffusion coefficient and time interval. 

Then the hyper parameters calculated with (10)~(13) are shown in Table 1. 

 

Table 1. Hyper Parameters of Distribution under 60 ℃ 

a1 b1 μ1 τ1
2
 

0.3284 100 0.0239 1.6501e-5 

4.3.2. Prior and posterior distribution under 80 ℃ 

The specific value of the drift coefficient under 80 ℃ and 60 ℃ can be known from(15), which is 

p2,1=2.2361. Then by combining (18)~(21) the hyper parameters of prior distribution under 80 ℃ are 

calculated and shown in Table 2. 

 

Table 2. The Hyper Parameters of Prior Distribution under 80 ℃ 

a20 b20 μ20 τ20
2
 

0.3284 100 0.0534 8.2502e-5 

Then based on degradation increment data, the hyper parameters of prior distribution and (22)(23)(25)

(26), the hyper parameters of posterior distribution under 80 ℃ are gained and shown in Table 3. 

 

Table 3. The Hyper Parameters of Posterior Distribution under 80 ℃ 

a2 b2 μ2 τ2
2
 

0.4918 160 0.0535 8.0359e-5 

4.3.3. Prior and posterior distribution under 100 ℃ and 120 ℃ 

As the discussion in section 3, the Prior and posterior distribution under 100 ℃ and 120 ℃ as well as 

the parameter estimation values under every temperature levels are known from (15), (18)~(21), (28)

~(33). The estimation values are shown in Table 4. 

 

Table 4. The Parameter Estimation Values under Every Temperature Levels 

 60℃ 80℃ 100℃ 120℃ 

d(T)·Δt 0.0239 0.0535 0.1098 0.2112 

σ
2·

Δt 0.0033 0.0031 0.0033 0.0032 

4.3.4. Reliability estimation 

From the estimation values in Table 4 and (34) the final value of A, B which is Â and B̂ are obtained, 

that is Â = 4824.1 and B̂ = 92274.2. Next, the drift coefficient under 25 ℃ is extrapolated with Â and
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B̂ , that is d(60 ℃)= 8.7164e-4. The estimation value of σ can also get from the estimation value of 

σ
2·

Δt under 120 ℃. Finally, the reliability estimation value of product is obtained by plugging d(60 ℃) 

and σ in(5), which is shown in Table 5. 
 

Table 5. The Estimation Value of Reliability and Lifetime 

 3 year 5 year 7 year 10 year 

R(T) 1 1 0.8384 0.0127 

5. Conclusion 

1) This paper applies Bayesian method to handle degradation data obtained from ADT with a new 

data processing and parameter inference method. 

2) The estimation values and processed data of previous stress level can contribute the estimation 

under next stress level with updating and iteration to maximize the utilization of test information 

to gain the best result.  

3) The method proposed can eliminate the deviation effect caused by data processing and improve 

the estimation accuracy and be a useful tool to apply in ADT design optimization. 

4) A case study is provided to demonstrate the validity and superiority of the proposed parameter 

estimation method as well as the reliability estimation method. 

5) This paper only considers product which subject single stress, products follow the multiple failure 

mode would be studied in future. 
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