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Abstract. A general class of circular systems, called circular 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F 

systems, is considered. For a system with independent and identically distributed component 

lifetimes, characteristics of the system's lifetime are studied via signature-based mixture 

representations. In deriving results combinatorial arguments are used. 

1. Introduction 

Since Kontoleon [1] introduced and studied the (linear) consecutive-𝑘 -out-of-𝑛:F systems, many 

papers have appeared on consecutive-type systems. This is due to the fact that such systems have been 

used to model communication networks, oil pipeline systems, quality control inspection procedures, 

radar detection systems, etc. A linear (circular) consecutive-𝑘 -out-of-𝑛 :F system consists of 𝑛 

components ordered linearly (circularly) which fails if and only if there are 𝑘  consecutive failed 

components. The circular system was introduced by Derman et al. [2]. Griffith [3] introduced and 

studied  the 𝑚-consecutive-𝑘-out-of-𝑛:F system which is a system consisting of 𝑛 components ordered 

linearly and fails if and only if there are 𝑚 non-overlapping runs of 𝑘 consecutive failed components. 

Alevizos et al. [4] considered the circular 𝑚-consecutive-𝑘 -out-of-𝑛 :F model for a system with 

circularly ordered components. Agarwal  and Mohan [5] proposed and studied the 𝑚-consecutive-𝑘-

out-of-𝑛:F system with overlapping runs. This system consists of 𝑛  linearly ordered components and 

fails if and only if there are at least 𝑚  overlapping runs of 𝑘  consecutive failures. Eryilmaz and 

Mahmoud [6] introduced and studied the linear 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F (𝑚-lin/con/(𝑘, 𝑙)/𝑛:F) 

system that fails if and only if there are at least 𝑚  𝑙 -overlapping runs of 𝑘  consecutive failed 

components. The number of 𝑙-overlapping failure runs of length 𝑘 is the number of failure runs of 

length 𝑘 each of which may have overlapping (common) part of length at most 𝑙 with the previous 

failure run of length 𝑘 that has been enumerated. 

The consecutive systems that have been studied are assumed to have components which function 

independently with the same probability, independently with different probabilities, dependently in a 

Markovian fashion or they are exchangeable dependent. Surveys on the subject can be found in Chao 

et al. [7], Kuo and Zuo [8], Eryilmaz [9] and Levitin [10]. 

In the paper, we study the circular 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F system (𝑚-cir/con/(𝑘, 𝑙)/𝑛:F), i.e., a 

system consisting of 𝑛 circularly ordered components that fails if and only if there are at least 𝑚, 

𝑚 ≥ 1, 𝑙-overlapping runs of 𝑘,  0 ≤ 𝑙 < 𝑘 ≤ 𝑛, consecutive failed components. This system, as the 

corresponding linear system, via its two flexible parameters 𝑚  and 𝑙,  is on the one hand a 

generalization of all the above mentioned circular consecutive systems and on the other hand models 

new types of circular systems. For 𝑚 = 1 it reduces to a circular consecutive-𝑘-out-of-𝑛:F system 

and for 𝑙 = 0 it corresponds to a circular 𝑚-consecutive-𝑘-out-of-𝑛:F system. 
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𝑚-cir/con/(𝑘, 𝑙)/𝑛:F  was introduced by Makri and Psillakis [11] and studied using a run counting  

statistic 𝑋𝑛;𝑘,𝑙
(𝐶)

, 0 ≤ 𝑙 < 𝑘 ≤ 𝑛, denoting the number of   𝑙-overlapping runs of failures of length 𝑘 in a 

sequence  𝑋𝑖 𝑖=1
𝑛  of 𝑛  two-state trials (failure-success) ordered on a circle. These authors also 

provided a potential application concerning an alarm or supervision system for a circular accelerator or 

for the core of a nuclear plant based on a 𝑚-cir/con/(𝑘, 𝑙)/𝑛:F system. The application takes into 

account the model's flexibility due to parameters 𝑚, 𝑙. The approach, instead, followed in the paper is 

based on the computation of mixture representations of the system lifetime distribution relied on 

certain sets of system's signatures. These mixtures have been proved to be useful tools in evaluating 

lifetime, and hence reliability, characteristics of a system and in comparing different systems, too. 

In the signature-based mixture representations of a system consisting of 𝑛 independent and identically 

distributed (i.i.d.), or more generally of exchangeable, component lifetimes crucial role has the vector 

𝒓 𝑛 =  𝑟1 𝑛 , 𝑟2 𝑛 , … , 𝑟𝑛 𝑛  . In a 𝑛-component system, 𝑟𝑖 𝑛 , 𝑖 = 1,2, … , 𝑛, denotes the number of 

path sets of the structure with exactly 𝑖 (working) components, and its computation can be relied on 

combinatorial arguments. Using these numbers, one can find explicitly signature-based representations 

(i.e. signatures, minimal and maximal signatures) for the system's structure and consequently, he/she 

can evaluate lifetime characteristics of the system. The theory on signature-based mixture 

representations of coherent systems has been developed for i.i.d. component lifetime distributions (see 

Samaniego [12], Navarro et al. [13] and the references therein) and is extended to exchangeable 

sequences by Navarro and Rychlik [14]. Further notable works on signatures are, among others, those 

of Boland [15], Eryilmaz [16], Eryilmaz et al. [17], Triantafyllou and Koutras [18], Koutras et al. [19] 

and Eryilmaz et al. [20]. 

In the paper, the lifetimes of system components are assumed to be i.i.d. In Section 2, we present some 

necessary preliminaries on signature-based mixture representations for the survival function 

(reliability) of a coherent system. These representations are then used to obtain results, presented in 

Section 3, on circular 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F systems. Numerical examples illustrate further 

the theoretical results. 

2. Signature-based mixture representations 
The computation of system signatures is a counting problem and in essence, a combinatorial one 

(Samaniego [12]). To be more specific, let  𝑇1 , 𝑇2 , … , 𝑇𝑛 , be the lifetimes of the components of a 𝑛-

component coherent system that has lifetime 𝑇 . Let us assume that 𝑇1 , 𝑇2 , … , 𝑇𝑛  are i.i.d. random 

variables from a continuous distribution, say F, on (0,∞). The signature of the system is defined as the 

vector 𝒔 = 𝒔 𝑛 = (𝑠1, 𝑠2, … , 𝑠𝑛) with 

 𝑠𝑖 = 𝑠𝑖 𝑛 = 𝑃 𝑇 = 𝑇𝑖:𝑛 ,   𝑖 = 1,2, … , 𝑛,                                                                                            (1) 

where 𝑇1:𝑛 ≤ 𝑇2:𝑛 ≤ ⋯ ≤ 𝑇𝑛:𝑛  are the order statistics of the lifetimes 𝑇1 , 𝑇2 , … , 𝑇𝑛 . 𝑇𝑖:𝑛  represents the 

lifetime of an 𝑖-out-of-𝑛 failure system (𝑖/𝑛:F) that is, a system for which the 𝑖-th component failure 

causes its failure. Obviously, the signature 𝒔 of a system is a probability vector, i.e. 𝑠𝑖 ≥ 0,  𝑠𝑖 =𝑛
𝑖=1

1, since 𝑃 𝑇 ∈  𝑇1:𝑛 , 𝑇2:𝑛 , … , 𝑇𝑛:𝑛  = 1.  As a counting problem the evaluation of the signature of a 

coherent system can be defined via (Kochar et al. [21]) 

𝑠𝑖 = 𝑛𝑖 𝑛! , 𝑖 = 1,2, … , 𝑛,                                                                                                                      (2) 

where 𝑛𝑖  is the number of orderings of the component lifetimes for which the 𝑖th component failure 

causes system failure. That is, 𝑠𝑖   represents the ratio of  𝑛𝑖  to the (total) number of possible orderings, 

𝑛!, of the 𝑛 failure times 𝑇1 , 𝑇2 , … , 𝑇𝑛 . Alternatively,  it holds (Boland [15]) 

𝑠𝑖 𝑛 = 𝛼𝑛−𝑖+1 𝑛 − 𝛼𝑛−𝑖 𝑛 =
𝑟𝑛−𝑖+1(𝑛)

 𝑛
𝑛−𝑖+1 

−
𝑟𝑛−𝑖(𝑛)

 𝑛
𝑛−𝑖 

, 1≤ 𝑖 ≤ 𝑛,                                                           (3) 

where 𝛼𝑖 = 𝛼𝑖 𝑛 = 𝑟𝑖(𝑛)  𝑛
𝑖
  ,  𝑖 = 1,2, … , 𝑛 (𝛼0(𝑛)=0, convention).  𝑟𝑖 = 𝑟𝑖(𝑛), is the number of 

path sets of a 𝑛 −component system with exactly 𝑖  (working) components, and consequently 𝛼𝑖  

represents the proportion of them among   𝑛
𝑖
  such possible sets.  Formula (3) is a fundamental tool for 

the computation of the signature of a coherent system since combinatorial arguments concerning the 

structure of the system can be used to derive the number of path sets of the system with 𝑖 components. 
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Specifically, 𝑟𝑖  can be determined by calculating the (total) number of binary sequences satisfying 

certain conditions which depend on the structure of the under study system. 

Given the system's signature, the distribution of the system lifetime T, for  i.i.d. component lifetimes 

with a distribution 𝐹 t = P 𝑇𝑖 ≤ 𝑡 , 𝑖 = 1,2, … , 𝑛,  can be provided (Samaniego [12]) by 

𝐹 𝑇 𝑡 = 𝑃 𝑇 > 𝑡 =  𝑠𝑖
𝑛
𝑖=1 𝑃(𝑇𝑖:𝑛 > 𝑡)  =  𝑠𝑖

𝑛
𝑖=1   𝑛

𝑗
 𝑖−1

𝑗=0 (𝐹 𝑡 )𝑗 (1 − 𝐹 𝑡 )𝑛−𝑗 .                       (4) 

Accordingly, the mean lifetime of the system can be expressed via its signature as 

𝐸 𝑇 =  𝑠𝑖
𝑛
𝑖=1 𝐸 𝑇𝑖:𝑛 .                                                                                                                         (5) 

System signature is a useful tool in comparing systems in terms of stochastic ordering (see, Kochar et 

al. [21], Samaniego [12]). In brief, let 𝒔(𝑢) = (𝑠1
 𝑢 

, 𝑠2
 𝑢 

, … , 𝑠𝑛
 𝑢 

), 𝑢 = 1,2, be the signatures of two 

coherent systems with respective lifetimes 𝑇(𝑢), 𝑢 = 1,2, both based on 𝑛 i.i.d. components with a 

common distribution 𝐹. Then, 

𝒔(1) ≤𝑠𝑡 𝒔(2)  iff   𝑠𝑗
(1)𝑛

𝑗=𝑖 ≤  𝑠𝑗
(2)

,𝑛
𝑗=𝑖 𝑖 = 1,2, … , 𝑛                                                                           (6) 

and 

if  𝒔(1) ≤𝑠𝑡 𝒔(2) then 𝑇(1) ≤𝑠𝑡 𝑇(2),                                                                                                       (7) 

that is, 𝑇 1  is stochastically smaller than 𝑇 2 , since the assumption 𝒔(1) ≤𝑠𝑡 𝒔(2),  implies 

𝐹 𝑇 1  𝑡 = 𝑃 𝑇 1 > 𝑡 ≤ 𝑃 𝑇 2 > 𝑡 = 𝐹 𝑇 2  𝑡 ,                                                                             (8) 

for all 𝑡, i.e. 𝑇(1) is less likely than 𝑇(2) to take values beyond 𝑡. 

Alternatively, the survival function  𝐹 𝑇(𝑡) or the reliability function (polynomial for i.i.d. components) 

of the system can be written (since 𝛼𝑗 =  𝑠𝑖
𝑛
𝑖=𝑛−𝑗+1 , 𝑗 = 1,2, … , 𝑛) as 

𝑅 𝑝 𝑡  = 𝑃 𝑇 > 𝑡 =  𝛼𝑗
𝑛
𝑗=1  𝑛

𝑗
 𝑝(𝑡)𝑗𝑞(𝑡)𝑛−𝑗 ,                                                                              (9) 

where 𝑝 𝑡 = 𝐹  𝑡 = 1 − 𝐹 𝑡 = 1 − 𝑞(𝑡). 

Furthermore, Eq. (4) can also be written as (see Appendix)  

𝐹 𝑇 𝑡 = 1 −  𝑠𝑖𝐼𝐹 𝑡  𝑖, 𝑛 − 𝑖 + 1 ,𝑛
𝑖=1                                                                                                (10) 

where 𝐼𝑥(𝑣, 𝜇) is the incomplete Beta function ratio, given by 𝐼𝑥(𝑣, 𝜇) =
𝛤 𝑣+𝜇 

𝛤 𝑣 𝛤 𝜇 
𝐵(𝑣; 𝜇; 𝑥) and 

𝐵 𝑣; 𝜇; 𝑥 =  𝑡𝑣−1𝑥

0
(1 − 𝑡)𝜇−1, 0 ≤ 𝑥 < 1, is the incomplete Beta function. 

For 𝑛𝑓  and 𝑛𝑤  denoting the minimum number of failed components that may cause system failure and 

the maximum number of failed components such that the system can still work,  respectively, it is true 

that  

𝑅(𝑝) =  𝑟𝑖(𝑛)𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑛
𝑖=𝑛−𝑛𝑤

= 1 −  𝑠𝑖 𝑛 𝑛𝑤 +1
𝑖=𝑛𝑓

𝐼1−𝑝 𝑖, 𝑛 − 𝑖 + 1 ,                                     (11)            

where 𝑝 = 𝐹 (𝑡0), for a fixed time 𝑡0, and 

𝐸 𝑇 =  𝑠𝑖(𝑛)𝐸
𝑛𝑤 +1
𝑖=𝑛𝑓

(𝑇𝑖:𝑛).                                                                                                               (12) 

The numbers 𝑛𝑓  and 𝑛𝑤  depend on the under study system. 

Navarro et al. [13] proved that any coherent system could be written as a generalized mixture of series 

or parallel systems.  More specifically, 

𝐹 𝑇 𝑡 = 𝑃 𝑇 > 𝑡 =  𝑎𝑖𝑃(𝑇1:𝑖 > 𝑡) =  𝛽𝑖𝑃 𝑇𝑖:𝑖 > 𝑡 ,𝑛
𝑖=1

𝑛
𝑖=1                                                          (13)  

where 𝒂 = (𝑎1 , 𝑎2 , … , 𝑎𝑛) and 𝜷 = (𝛽1 , 𝛽2 , … , 𝛽𝑛) are vectors, satisfying the conditions  𝑎𝑖
𝑛
𝑖=1 = 1,

 𝛽𝑖
𝑛
𝑖=1 = 1 and are called, respectively, minimal and maximal signature of the system. Eryilmaz [16] 
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proved that the minimal and maximal signature of any coherent system with exchangeable (and 

consequently with  i.i.d.) components can be given as 

𝑎𝑖 =   −1 𝑗− 𝑛−𝑖  𝑗
𝑛−𝑖

 
𝑛𝑤
𝑗=𝑛−𝑖 𝑟𝑛−𝑗  𝑛 ,                                                                                              (14) 

𝛽𝑖 = −  −1 𝑖−𝑗  𝑛−𝑗
𝑛−𝑖

 
min (𝑖,𝑛𝑤 )
𝑗 =0 𝑟𝑛−𝑗  𝑛 .                                                                                            (15) 

In (13),  𝑇1:𝑖  and 𝑇𝑖:𝑖  are the lifetimes of an 𝑖-component series and a parallel system, respectively. 

Since, 

𝑃 𝑇1:𝑖 > 𝑡 = 𝑃(𝑇1 > 𝑡, 𝑇2 > 𝑡, … , 𝑇𝑖 > 𝑡) = (𝐹  𝑡 )𝑖                                                                        (16) 

and 

𝑃 𝑇𝑖:𝑖 > 𝑡 = 1 − 𝑃(𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑡, … , 𝑇𝑖 ≤ 𝑡) = 1 − (1 − 𝐹  𝑡 )𝑖 ,                                                  (17) 

knowing the common component survival function  𝐹  𝑡  and the number of path sets 𝑟𝑖 𝑛  the only 

that remains to determine the system's survival function 𝐹 𝑇(𝑡) is to specify 𝑛𝑤  for the under study 

structure. 

3. Circular 𝒎-consecutive-𝒌, 𝒍-out-of-𝒏:F systems 

Lemma 1 (Makri et al. [22]). The number of allocations of 𝛾  indistinguishable balls into 𝑟 

distinguishable cells, 𝑖  specified of which have capacity 𝑚 − 1 and each of  the rest 𝑟 − 𝑖 has capacity 

𝑛 − 1 is given by 

 

𝐶𝑖,𝑟−𝑖(𝛾; 𝑚 − 1, 𝑛 − 1) =   𝑖
𝑗1
  (−1)𝑗1+𝑗2

 
𝛾−𝑚𝑗1

𝑛
 

𝑗2=0

 
𝛾

𝑚
 

𝑗1=0
 𝑟−𝑖

𝑗2
  𝛾−𝑚𝑗1−𝑛𝑗2+𝑟−1

𝑟−1
 ,                              (18) 

 

where  𝑥  denotes the greatest integer less than or equal to 𝑥. 
Corollary  1 (Makri et al. [22]).  Let 𝐶𝑖,𝑟−𝑖(𝛾; 𝑚 − 1, 𝑛 − 1) be as in Lemma 1. Then, 

𝐶𝑖,𝑟−𝑖(𝛾; 𝑚 − 1, 𝑚 − 1) ≡ 𝐶(𝛾, 𝑟; 𝑚 − 1) =  (−1)𝑗  𝑟
𝑗
  𝛾−𝑚𝑗 +𝑟−1

𝑟−1
 .

 
𝛾

𝑚
 

𝑗=0
                                        (19)     

The proofs of Theorem 1 and Proposition 1 are given in Appendix. 

Theorem 1. The number, 𝑟𝑖 𝑛 , of path sets with 𝑖 elements of a circular 𝑚-consecutive-𝑘, 𝑙-out-of-

𝑛:F system is given by the formula 

𝑟𝑖 𝑛 =  𝑟𝑖,𝑥
𝑚−1
𝑥=0  𝑛                                                                                                                            (20)      

(convention: 𝑟0 𝑛 = 0) where 

𝑟𝑖,0 𝑛 =
𝑛

𝑖
𝐶(𝑛 − 𝑖, 𝑖; 𝑘 − 1)                                                                                                               (21) 

and for 𝑥 ≥ 1, 

𝑟𝑖,𝑥(𝑛) =
𝑛

𝑖
  𝑖

𝑗
  𝑥−1

𝑗−1
 𝐶𝑗 ,𝑖−𝑗  𝑛 − 𝑖 − 𝑗𝑘 −  𝑥 − 𝑗  𝑘 − 𝑙 ; 𝑘 − 𝑙 − 1, 𝑘 − 1 .𝑖

𝑗 =1                             (22) 

Proposition 1. For a circular 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F system, it is true that for 𝑚 𝑘 − 𝑙 ≤ 𝑛 ≤
𝑚 𝑘 − 𝑙 + 𝑙, 𝑛𝑓 = 𝑛, 𝑛𝑤 = 𝑛 − 1 and for 𝑛 ≥ 𝑚 𝑘 − 𝑙 + 𝑙 + 1, 

𝑛𝑓 = 𝑚 𝑘 − 𝑙 + 𝑙,                                                                                                                              (23) 

𝑛𝑤 = 𝑛 − 2 −  
𝑛−1−𝑛𝑓

𝑘
 .                                                                                                                      (24) 

Example 1. In Table 1, we depict the reliability 𝑅𝑘,𝑚;𝑛
 𝑙 (𝑝), for 𝑝 = 0.50 to 0.95, with step 0.05,  of 

circular 𝑚-consecutive-𝑘, 𝑙 -out-of-𝑛 :F systems for 𝑙 = 0,1,2  and 𝑚 = 2 , 𝑘 = 3 , 𝑛 = 10. 𝑅𝑘,𝑚;𝑛
 𝑙 (𝑝) 

can be computed using Eq. (11) or (13). The  𝑟𝑖
(𝑙)

,  𝑠𝑖
(𝑙)

, 𝑎𝑖
(𝑙)

 and  𝛽𝑖
(𝑙)

 are presented in Table 2. From 

Table 1, we observe that 𝑅𝑘,𝑚;𝑛
 𝑙 (𝑝) does not increase with increasing 𝑙 and is bounded from above by 

that of  𝑙 = 0  and below by that of 𝑙 = 2 = 𝑘 − 1.  This feature is a common one for a 

𝑚 −cir/con/(𝑘, 𝑙)/𝑛:F with fixed 𝑚, 𝑛, 𝑘, 𝑝 and varying 𝑙, 𝑙 = 0,1, … , 𝑘 − 1. 
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Table 1. RELIABILITY 𝑅3,2;10
 𝑙 

(𝑝), 𝑙 = 0,1,2,  of  2 −cir/con/(3, 𝑙)/10:F for  𝑝 = 0.50 0.05 0.95 

𝑝/𝑙 0 1 2 

0.50 0.8623 0.7939 0.6670 

0.55 0.9163 0.8656 0.7591 

0.60 0.9532 0.9187 0.8360 

0.65 0.9764 0.9551 0.8962 

0.70 0.9895 0.9779 0.9401 

0.75 0.9961 0.9907 0.9693 

0.80 0.9989 0.9968 0.9867 

0.85 0.9998 0.9992 0.9956 

0.90 1.0000 0.9999 0.9991 

0.95 1.0000 1.0000 0.9999 

 

Table 2. PATH  NUMBERS, 𝑟𝑖
 𝑙 

,  SIGNATURES, 𝑠𝑖
 𝑙 

,  MINIMAL, 𝑎𝑖
(𝑙)

 

AND MAXIMAL,  𝛽𝑖
(𝑙)

 SIGNATURES, OF 2-CIR/CON/(3, 𝑙)/10: F SYSTEMS FOR 𝑙 = 0,1,2 

𝑖 𝑟𝑖
(𝑙)

 𝑎𝑖
(𝑙)

 𝛽𝑖
(𝑙)

 𝑠𝑖
(𝑙)

 𝑟𝑖
(𝑙)

 𝑎𝑖
(𝑙)

 𝛽𝑖
(𝑙)

 𝑠𝑖
(𝑙)

 𝑟𝑖
(𝑙)

 𝑎𝑖
(𝑙)

 𝛽𝑖
(𝑙)

 𝑠𝑖
(𝑙)

 

 𝑙 = 0    𝑙 = 1    𝑙 = 2    

1    0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 

2   0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 

3 59 60 0 0.0000 29 30 0 0.0000 9 10 0 0.0000 

4  185 -235 0 0.0000 155 -55 0 0.0000 95 25 10 0.0476 

5  251 402 0 0.0000 241 -58 10 0.0397 201 -158 -10 0.1508 

6  210 -375 25 0.1190 210 275 5 0.2222 200 265 15 0.3492 

7  120 200 -40 0.3810 120 -350 -30 0.4881 120 -210 -50 0.3691 

8    45 -60 15 0.5000 45 220 5 0.2500 45 80 55 0.0833 

9   10 10 0 0.0000 10 -70 20 0.0000 10 -10 -20 0.0000 

10  1 -1 1 0.0000 1 9 -9 0.0000 1 -1 1 0.0000 

 

In Table 2 we present, respectively, the vectors of the path numbers  𝒓 𝑙 =  𝑟1
 𝑙 , 𝑟2

 𝑙 , … , 𝑟𝑛
 𝑙  , the 

signatures 𝒔 𝑙 =  𝑠1
 𝑙 , 𝑠2

 𝑙 , … , 𝑠𝑛
 𝑙  , the minimal and the maximal 𝒂(𝑙) =   𝑎1

 𝑙 , 𝑎2
 𝑙 , … , 𝑎𝑛

 𝑙   and  

𝜷(𝑙) =  𝛽1
 𝑙 , 𝛽2

 𝑙 , … , 𝛽𝑛
 𝑙  ,  signatures, 0 ≤ 𝑙 ≤ 𝑘 − 1,  of circular 𝑚 -consecutive- 𝑘, 𝑙 -out-of- 𝑛 :F 

systems for 𝑚 = 2, 𝑘 = 3, 𝑛 = 10. By the  𝑠𝑖
 𝑙 

 columns of Table 2 we easily verify, using Eq. (6), 

that 𝒔(2) ≤𝑠𝑡 𝒔(1) ≤𝑠𝑡 𝒔(0). Therefore, for 𝑇𝑘,𝑚;𝑛
(𝑙)

denoting the lifetime of a 𝑚-cir/con/(𝑘, 𝑙)/n:F  system,  

it holds 𝑇3,2;10
(2)

≤𝑠𝑡 𝑇3,2;10
(1)

≤𝑠𝑡 𝑇3,2;10
(0)

,  which is consistent with the findings of Table 1, i.e. 

𝑅3,2;10
 2  𝑝 ≤ 𝑅3,2;10

 1  𝑝 ≤ 𝑅3,2;10
 0  𝑝 . 

Example 2. Let us consider that the component lifetimes 𝑇1 , 𝑇2 , … , 𝑇𝑛 are independent random 

variables with a common exponential distribution 𝐹 𝑡 = 1 − 𝑒−𝜆𝑡 , 𝑡 ≥ 0, and mean  1 𝜆, 𝜆 > 0. 

Then, the expected value of 𝑇𝑖:𝑛  (i.e. of the 𝑖-th smallest component lifetime) is given by 

𝐸(𝑇𝑖:𝑛) = 𝜆−1  (𝑛 − 𝑗 + 1)−1, 𝑖 = 1,2, … , 𝑛.𝑖
𝑗=1                                                                                 (25) 

In Table 3, we compute, via Eq. (13), the survival function  𝐹 𝑇3,2;10

 𝑙  𝑡 , i.e. the reliability 𝑅3,2;10
 𝑙  𝑡 , of 

2-cir/con/ (3, 𝑙)/10: F, for 𝑙 = 0,1,2  and several values of  𝑡 , when 𝜆 = 1.  The 𝑎𝑖
(𝑙)

 and 𝛽𝑖
(𝑙)

 are 

presented in Table 2. 

In Table 4, we compute, by Eqs. (12) and (25), the mean lifetime, 𝐸(𝑇𝑘,𝑚;𝑛
(𝑙)

), i.e. the mean time to 

failure (MTTF), of circular 𝑚-consecutive-𝑘, 𝑙-out-of-𝑛:F systems, for several values of 𝑛, 𝑚 , 𝑘 and 
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0 ≤ 𝑙 ≤ 𝑘 − 1, when 𝜆 = 1. From the Table, we observe that 𝐸(𝑇𝑘,𝑚;𝑛
(𝑙)

) is increasing  in 𝑚 and 𝑘 and 

decreasing in 𝑛 and 𝑙. 

Table 3.  SURVIVAL FUNCTION  𝐹 𝑇3,2;10

 𝑙  𝑡 , 𝑙 = 0,1,2 

OF  2-CIR/CON/(3, 𝑙)/10:F SYSTEMS, FOR EXPONENTIAL 

MODEL WITH  𝜆 = 1 

 

 

 

 

 

 

 

Table 4.  MTTF, 𝐸 𝑇𝑘,𝑚;𝑛
 𝑙  , 𝑙 = 0,1, … , 𝑘 − 1,  OF  𝑚-CIR/CON/(𝑘, 𝑙)/𝑛:F SYSTEMS  

𝑛 𝑚 𝑘 𝑙 MTTF 𝑛 𝑚 𝑘 𝑙 MTTF 

10 2 3 0 1.2325 20 3 3 0 1.0525 

   1 1.1056    1 0.9381 

   2 0.9389    2 0.7825 

10 3 3 0 1.9290 20 2 4 0 1.1062 

   1 1.5679    1 1.0565 

   2 1.1512    2 0.9883 

10 2 4 0 1.7623    3 0.8861 

   1 1.6234      

   2 1.4448      

   3 1.2067      

 

4. Appendix 

Proof of Equation (10). Since, 

  
𝑛

𝑗
  𝐹 𝑡  

𝑗
𝑛

𝑗=𝑖

(1 − 𝐹 𝑡 )𝑛−𝑗 =
𝑛!

 𝑖 − 1 ! (𝑛 − 𝑖)!
 𝑢𝑖−1

𝐹(𝑡)

0

(1 − 𝑢) 𝑛−𝑖+1 −1𝑑𝑢 

   = 𝐼𝐹 𝑡 (𝑖, 𝑛 − 𝑖 + 1) 

and 𝑃 𝑇 > 𝑡 = 1 −  𝑠𝑖
𝑛
𝑖=1   𝑛

𝑗
 𝑛

𝑗 =𝑖 (𝐹 𝑡 )𝑗 (𝐹 (𝑡))𝑛−𝑗 ,  the result follows. 

Proof of Theorem 1. Let 𝑟𝑖,𝑥 𝑛  denote the number of circularly ordered binary sequences of 𝑛 trials 

with 𝑖 successes (working components) and 𝑥 𝑙-overlapping failure (failed component) runs of length 

𝑘. Then, it is clear that  𝑟𝑖 𝑛 = 𝑟𝑖,0 𝑛 + 𝑟𝑖,1 𝑛 + ⋯ + 𝑟𝑖,𝑚−1(𝑛). We will consider the evaluation of 

𝑟𝑖,𝑥(𝑛) mainly as a problem of allocation of balls into cells. The 𝑖 working components displayed on 

the circle form 𝑖 cells with a cell defined between two working components. These cells are made 

distinguishable by labelling them. The number of allocations of 𝑛 − 𝑖 failures (failed components) into 

𝑖 cells so that no cell receives more than 𝑘 − 1 failures is 𝐶(𝑛 − 𝑖, 𝑖; 𝑘 − 1), by Corollary 1, so that 

𝑟𝑖,0 𝑛 =
𝑛

𝑖
𝐶 𝑛 − 𝑖, 𝑖; 𝑘 − 1 , since the sequences are circularly arranged and each of the 𝐶(𝑛 −

𝑖, 𝑖; 𝑘 − 1)  arrangements gives 𝑛  arrangements by rotation and the set of 𝑛𝐶(𝑛 − 𝑖, 𝑖; 𝑘 − 1) 

𝑡\𝑙 0 1 2 

0.25 0.9980 0.9948 0.9806 

0.50 0.9569 0.9243 0.8448 

0.75 0.8242 0.7463 0.6108 

1.00 0.6256 0.5235 0.3821 

1.50 0.2652 0.1904 0.1131 

2.00 0.0860 0.0547 0.0275 

2.50 0.0239 0.0140 0.0062 

3.00 0.0061 0.0034 0.0013 
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arrangements is partitioned into sets of 𝑖 like arrangements. For 𝑥 ≥ 1 we observe that the number of 

allocations of 𝑛 − 𝑖 failures into 𝑖 distinguishable cells (created by the 𝑖 working components) with 𝑗 
of them receiving 𝑥  𝑙-overlapping failure runs of length 𝑘 and no one of the remaining 𝑖 − 𝑗 cells 

receiving more than 𝑘 − 1 failures is  𝑥−1
𝑗−1

 𝐶𝑗 ,𝑖−𝑗  𝑛 − 𝑖 − 𝑗𝑘 −  𝑥 − 𝑗  𝑘 − 𝑙 ; 𝑘 − 𝑙 − 1, 𝑘 − 1 . But 

the 𝑗 cells (the ones containing the 𝑙-overlapping failure runs of length 𝑘) can be chosen in  𝑖
𝑗
  ways, 

𝑗 = 1,2, … , 𝑚𝑖𝑛  𝑖,  
𝑛−𝑖

𝑘
  . So, the total number of allocations of the 𝑛 − 𝑖 failed components in the 𝑖 

cells yielding 𝑥  𝑙 -overlapping failure runs of length 𝑘  is   𝑖
𝑗
 𝑖

𝑗=1  𝑥−1
𝑗−1

 𝐶𝑗 ,𝑖−𝑗  𝑛 − 𝑖 − 𝑗𝑘 −

 𝑥 − 𝑗  𝑘 − 𝑙 ; 𝑘 − 𝑙 − 1, 𝑘 − 1 .  Since the created sequences are circular, using the same arguments 

as above, the result for 𝑟𝑖,𝑥(𝑛), 𝑥 ≥ 1, follows. 

Proof of Proposition 1. For 𝑛 ≥ 𝑙 + 𝑚 𝑘 − 𝑙 + 1, it is clear that 𝑙 + 𝑚(𝑘 − 𝑙) consecutive failures 

(𝐹s) may cause system's failure while 𝑙 + 𝑚 𝑘 − 𝑙 − 1 can not, so that 𝑛𝑓 = 𝑙 + 𝑚(𝑘 − 𝑙). Working 

in a similar way with that of Eryilmaz and Mahmoud [6] we consider one of the positions in the 

circular sequence as the first one and going clockwise we put 𝑥 = 𝑙 + 𝑚 𝑘 − 𝑙 − 1 failures followed 

and preceded by a success (𝑆), i.e., we have a sequence of the form  

𝑆

𝑛

𝐹

1

𝐹

2
…

𝐹

𝑥

𝑆

𝑥 + 1
. . . . . . .   
𝑛−𝑥−2

, 

where the  𝑛 − 𝑥 − 2  trials may include a maximum of 𝑛 − 𝑥 − 2 −  
𝑛−𝑥−2

𝑘
  failures so that the 

system can still work. Thus, 𝑛𝑤 = 𝑛 − 2 −  
𝑛−𝑙−𝑚 𝑘−𝑙 −1

𝑘
 .  For 𝑚 𝑘 − 𝑙 ≤ 𝑛 ≤ 𝑙 + 𝑚 𝑘 − 𝑙  the 

results for 𝑛𝑓  and  𝑛𝑤  are straightforward. 
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