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Abstract. The goal of this paper is analysis of design methods for composite beams and plates 

with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that 

traditional composite materials are typically formed using prepregs with rectilinear fibers only. 

The results application area is associated with design process for shaped composite structure 

element by using of biomechanical principles. One of the related problems is the evaluation of 

fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element 

with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is 

considered as example, and it can be produced by unidirectional fiber bunch forming, 

impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures 

with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when 

material with required accuracy can be considered as homogeneous, neglecting fiber 

misorientation, is determined. It is shown that for the beams with height-to-width ratio small 

enough it is possible to consider 2D misorientation only. 

1.  Introduction 

The international term “bio-inspired method” refers to a methods inspired by Nature. The main slogan 

of new scientific area named “strength biomechanics” is “Nature study”. By analogy with the structure 

of knots, rational equally stressed curvilinear fiber trajectories “flowing” around the hole can be 

constructed for the fiber reinforced polymers (FRP) laminates [1-3]. The structure of a bamboo stalk 

shows us the need to consider different fracture modes of composite tube elements in order to specify 

rational equistrong dimensions of tube or bamboo construction [4-6]. 

One of the major advantages of fiber composites is the ease of complex shape components 

fabrication when considerable loads and high temperatures are not required as for metals. For 

example, a modern version of pultrusion method – pulforming allows to create some workpiece from 

unidirectional fibers, impregnated by polymer matrix, and then it is possible to form it into desired 

shape, in absence of fibers cutting. Due to these features there is an interest to the design of uniform 

strength beams as elastic elements for effective substitution of steel multi-leaf springs [7]. It is shown 

in [8] using special FRP strength criteria [9] that it is possible to design the shaped beam which 

satisfies the strength and stiffness requirements with three times less weight in comparison with 

rectangular beam. And because of fiberglass lower elastic modulus and density the weight of this 

beam can be reduced approximately 15 times, compared with steel beam. The analogy of the bending 

flexibility of shaped beams with constant cross section area and branching composite structures like a 
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treetop with a constant sum of branches section areas (Leonardo’s rule) [10, 11] has been studied in 

[12]. 

This article is aimed to analyze the effects, which should be considered in case of misorientation of 

fibers, packed in beam body along curvilinear trajectories, corresponding to complex beam shape and 

stress state. 

Constarea beam (beam with constant cross-section area) is chosen as a most effective form for 

composite design, because of absence of cut fibers and constant volume fraction of fibers. The 

following problems are considered: 

1. Changing of design relations based on reasonable simplifying hypotheses and taking into 

account fiber misorientation.  

2. Determination of the angle range where fiber misorientation can be neglected with required 

calculation accuracy. 

3. Changing of uniform strength beam shape taking into account fiber misorientation. 

Standard triangular, parabolic, constarea uniform stressed beams for homogeneous material are 

known. It is required to determine shape of uniform stressed beam by iteration process to optimal 

design using fiber uniform stress criterion. Last problem can be solved only by computer modeling of 

complex spatial fiber trajectories. 

2.  Shaped constarea beam 

Earlier, in [7, 8], equally strong, shaped composite leaf springs (figure 1) are modeled by a cantilever 

beam, the dimensions of which (width w  and height h) are assumed to be variable according to the 

laws: 

 
*( ) (0)(1 )w x w x   , 

*( ) (0)(1 )h x h x   , * /x x L  (1) 

In the rational design of leaf spring it is necessary to find sizes of root section (0)h , (0)w  and 

parameters  ,   of their variation for the simultaneous implementation of controversial requirements 

for rigidity and for strength (load carry capacity): 

 
3

3

(0) (0)

4 v

P E w h
C

v L
  , (2) 

 
max *max

2

6

(0) (0)

P L

w h
   . (3) 

The contradiction of the requirements (2) and (3) is that, to increase the load carry capacity (to 

reduce stresses), the thickness of the beam should be increased and, to reduce rigidity (to increase the 

accumulated elastic energy), the thickness of the beam should be decreased. The best design 

corresponds to the fulfillment of both (2) and (3) equations.  

The additional condition of equal strength is 

  
2 2

6 ( ) 6
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w x h x w h


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and leads from equations (1) to the linear ratio 

 2 1   . (5) 

The deflection v  of the shaped beam under load P  (figure 1) can be easily defined from the 

equality of force work 1/ 2Pv  and elastic energy accumulated in the beam as follows: 
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The coefficient of the deflection form of equation (6) is: 
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That is equal to the ratio of the maximum deflection of the shaped beam to the deflection of the 

rectangular beam v0 with the same dimensions of the root section. 

The constarea beam, which is best for the fibrous structure, is designed to retain the cross-section 

area and the number of fibers in each section, i.e. there are no cut fibers. The equations (1) shows the 

constant section area should meet the condition: 

 0   . (8) 

So the values   and   are –1 and 1 respectively, based on the equal strength condition (5). For 

these values, it is clear that a constarea beam has three times higher flexibility than a rectangular beam 

(see (7)). The necessary dimensions of the spring root section can be found based on simultaneous 

fulfilling conditions (2) and (3) as follows: 
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where 
0h , 

0w  are the constant dimensions of a rectangular beam section that meet conditions (2) and 

(3). The mass of the shaped beam is easily calculated by the integral: 
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A possible mass of the spring is found from equations (9), (10) that fulfill the conditions of rigidity 

(2) and strength (3): 
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where /m v    is the coefficient of the mass decrease of the shaped beam compared to a 

rectangular beam. It can be seen from (11) that the mass of the beam depends on both the material 

density   and the elasticity modulus E . This effect makes GFRP (fiberglass plastic) the most 

efficient construction material for the elastic elements. 

For steel 
sE 210 GPa, strength 

s  800 MPa and density s  7800 kg/m3. For a unidirectional 

GFRP 
sE 45 GPa, strength 

s  800 MPa and s  2500 kg/m3. Thus, according to (11), in the ideal 

case, the fiberglass spring can be approximately 15 times lighter compared to the steel one.  

An interesting conclusion can be drawn from analyzing the influence of an equally strong spring 

upon reducing its mass: 
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and resulting from equation (5)  
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i.e. by simultaneously fulfilling the conditions of rigidity and strength, any equally strong ideal beam 

turns out to be three times lighter than a rectangular beam. The same result is obtained for ideal 

branching. This is the best limit case; due to the form, no larger reduction in mass can be obtained. 

 

 

Figure 1. Cantilever constarea beam with constant width-thickness end area. 

3.  Fibers trajectories in constarea beam 

Changing of cross-section dimensions of “ideal” constarea beam is described by power law 

dependences (1). For taking into account effect of misorientation of fibers on deflection it is necessary 

to accept some model of “fibers” distribution in the beam.  

In this work it is proposed to use “spreading” principle, then in every point direction only is 

determined as for infinitely thin fiber. Trajectories in this case are conformed with beam shape (1) and 

are determined by initial coordinates (0)y , (0)z  

  *( ) (0) 1y x y x
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  ,  *( ) (0) 1z x z x


  , (14) 

where 1   , 1  . Trajectories slope in planes xy  and xz  are characterized by derivatives of the 

functions (14)  
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Model of misorientation angle calculation is shown in figure 2. “Fiber” element along axis 1 has 

projections onto axes d x , d y , d z . Angle   between axis 1 and axis x  is determined from apparent 

dependences: 
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. (15) 
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Figure.2. Scheme for calculation of the local misorientation angle of fiber. 

 

If misorientation angle is known, it is possible to calculate local value of longitudinal elastic 

modulus 
xE , which depends on coordinates x , ( )y x , ( )z x , connected by equations (14) with initial 

coordinates of each “fiber” (0)y , (0)z . The “fiber” tensor modulus 
0

11E  is much greater than other 

three moduli 
0

22E , 
0

12E , 0

66E . Then formula for elastic modulus transformation is extremely simple: 
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As effective elastic modulus for layer, section or whole beam the value of modulus for 

homogeneous element with the same dimensions and the same summary stiffness is understood. In the 

case of beam tension we can suppose that deformations in each section are homogeneous, i.e. 

deformations are the same for each structural element and the effective modulus can be estimated by 

simple averaging: 

 0 4

1

1

1
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E E
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


  , (17) 

where i  – “fiber” number in section, N  – total number of “fibers”.  

More complex bending problem can be solved only based on some kinematic hypotheses: 

1. Deformations are changing linearly with height. 

2. In each layer (across the width – along y  axis) deformations are uniform, so the effective 

modulus of the layer can be determined by (17). 

3. If height of section is small in comparison with width, only 2D misorientation can be 

considered, and effective modulus in each layer can be assumed constant, thereby averaging (17) can 

be used for whole section. 

For bending of beam with dimensions ( )w x , ( )h x  it is possible to estimate the effective modulus: 
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Neglecting small “fibers” misorientation across the height for beams with small height-to-width 

and height-to-length ratios it is possible to estimate the effective modulus by averaging along width 

only, and considering that this averaged value is constant along section 
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Form of homogeneous “uniform strength” constarea beam is chosen and the maximum stress on the 

surface eff

x xE   reaches the tensile strength (0)  simultaneously in every section. For taking into 

account the misorientation effect it is necessary to consider the different local “fiber” strength ( )   

and reduced local stress ( )x  , associated with a decrease of the local modulus of elasticity ( )xE  . 

The deformation   is proposed to be uniform along the width. So the local stress change for critical 

state can be expressed as  

eff( ) ( ) (0) ( ) /x x x xE E E       . 

For the tensile strength at an angle   to the fibers two linear criteria are affirmed in [9] for fibers 

rupture and for splitting along fiber-matrix interface: 

1 1 6 (0)m     , 
2 2 6 (90)m     . 

The parameters of the second criterion are usually determined from tests of unidirectional 

composite specimens, cut at different angles to fibers. For qualitative estimates only small 

misorientation angles are considered, and then first criterion for fiber rupture is valid: 
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  
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
. (20) 

For a unidirectional GFRP the angle 0  at change of fracture modes 1-2 is about 5 . For clarity, in 

such small range of angles the trigonometric functions can be represented by power series: 
2 2cos 1   , 

4 2cos 1 2   , 
3

0 0cos sin 2 / 3      . The effective modulus of elasticity is 

estimated by the average value of 
4cos  : 
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Strength ( )   in the range 
0i   can be estimated in following form: 

 
0 4 * 3

3 31 0 0
1 0 1 0 00 4 2

1 0 0 1 0 0

(0) (cos )( )
1 7 2 1.013

( ) (0) (cos )(cos cos sin ) 3x
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m m o

E m

   
  

      
      

  
,  

for accepted values 1 0 0.1m   . It means that for these composite material properties the “equal 

strength” condition is satisfied even with a small reserve. This ratio may be slightly less than one, but 

it is important to note that the strength reduction for small fiber misorientation is insignificant.  

In order to “design” beam shape with the “equal strength” condition an iterative computational 

simulation of trajectories and rebuilding of beam shape by using at least two of the above criteria is 

necessary, and for more correct results another criterion for interlaminate shear fracture [9] 

x xym c     has to be added. 

Decrease of the effective elastic modulus of the material is recommended for elastic elements such 

as leaf springs, if it does not decrease the strength. Simplified example shows that misalignment can 

have a positive effect in the elastic elements. It is important to note that a small misalignment is useful 

to increase of unidirectional composites splitting resistance, which is especially important during 

cyclic loading. 
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More rigorous estimates are obtained with use of the finite element method upon misoriented 

inhomogeneous structure and this method does not require the hypotheses of width and/or height 

uniform deformation. 

4.  Bending flexibility increase due to branching 

The analogy of the bending flexibility of shaped beams with constant cross section area and branching 

composite structures like a treetop with a constant sum of branches section areas (Leonardo’s rule) is 

studied. In ideal case shaping or branching provide threefold bend flexibility growth with strength 

retaining, i.e., threefold increase of accumulated elastic energy for the fixed applied load and the same 

mass of the elastic element. It is shown that the use of unidirectional GFRP (glass fiber reinforced 

plastic) in shaped elastic beams makes it possible to reduce mass approximately 15 times in 

comparison with the steel analog.  

An interesting method for increasing the bending flexibility of the composite elastic elements is to 

observe the structure of the top of an apple tree. In notes of Leonardo da Vinci [11, 12] the following 

statement is already expressed: “The sum of the squares of the diameters of branches is the same 

before and after branching”.  

Let us imagine the simplest branching model, in which the console cylinder beam is loaded at the 

end with a concentrated force Р  (figure 3) branched into N  similar cylinder rods that preserve the total 

section area as follows: 

  
2 2

1Nd Nd  (21) 

where 1Nd  is the diameter of each of the similar branches; the second suffix number indicates the 

number of the branch point, in this case it is only one. The distance from the seal in which it is 

reasonable to make the branch is selected based on the condition of equal maximum bending stresses 

in the root section and at the branch point as follows: 
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So the bending stiffness changes after branching and specify the deflection of the initial cylinder 

beam is specified as v . After branching into N  parts 
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3/2

1 1;
/ 1 ( 1) 1v N N N

v v N N 

 
       

As a result of branching, the tree becomes more flexible, which means it better resists the wind 

loads. It is interesting to note that branching does not provide any advantages of flexibility for either 

the trivial case ( 1N   in (23)) or a large number of branches ( N  ). This means that there is some 

optimum number of branches for the maximum increase in the bending flexibility:  

 
3/2 1/2

optd / d 0 2 3 ( 1) 0 3v N N N N N         (24) 
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Figure. 3. Calculation model and pattern of variations in the number  

of branches for increasing flexibility under conditions of equal stress. 

For 3N  : 
1/2 3/2

31 313 / 1 2 / 3 1.38v v      . This is the maximum possible value of the 

deflection coefficient for retaining equal strength for one branch. 

The flexibility increases with growth of branches number. A general formula can be written for n  

points of branching into N  branches at each point while retaining the condition of equal strength (22) 

for each subsequent branch as follows: 

 

1 1

3 /2 /2

1 1

1
1 1

n ni i

Nn
v i i

i i

v N N N

v N N


 

 

 
      . (25) 

These power series certainly converge, and let us settle on the optimal case of 3N  . Then, the 

following expression for additional deflection represents a geometric progression sum with the initial 

member 1 2 3 3a  and 1/ 3.q   The sum of this progression is:    1 1 / 1na q q  .  

With unlimited number growth ( n ) of equally strong branches into three branches ( 3N  ), 

the deflection coefficient  

   
3 2

1 1.91
1 1/ 3 3 3 1

n
v n

v a

v



    

 
.  

This is the maximum coefficient of flexibility growth while retaining the strength that can be 

obtained during branching into a number (three) of similar branches. The situation is analogous to the 

case when the constarea beam profile (figure 1) could only be changed step by step, not smoothly.  

In order to estimate the limit value of the deflection coefficient for continuous (fractal) branching, 

it is necessary to present a number N  of branches as permanently changing value while retaining the 

total area 
2 2( ) ( )d N x d x  and equal stress 

3 3( ) ( ) ( )LN x d x L x d  . So 

 
2

( ) / ( ) ( ) / ( )N x L L x I x I N x     and the deflection 

 

3
* 2
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( ) ( )d 3

L

N x

P PL
v L x N x x v

EI EI
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Thus, in the ideal case, the branching cylinder rod with the same strength has three times greater 

flexibility compared to a homogenous rod (see (13)). 
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A branching composite beam can be used as an effective elastic element, e.g., in space-based 

structures (with no dimension limits), while for the fixed weight three times greater elastic energy is 

accumulated. If the weight efficiency of these elements is compared to the steel springs, then the low-

modulus and high-strength GFRP can provide a gain by more than 15 times. 

5.  Conclusions 

Traditional composite technology is based on the application of rectilinear (layout fabrics, prepregs) or 

spiral (winding bundles, belts) fibers trajectories. Therefore, methods of stiffness and strength 

engineering estimation of profiled composite components with complex fiber layup trajectories are not 

well developed. This article is intended to fill this gap. On the basis of the proposed approaches to the 

estimation of effective elastic modulus and strength, composite elements can be calculated taking into 

account the local variable misorientation of the fibers. The range of misorientation angles about 5o 

leads to negligible refinements. Computer simulation of the trajectories of fibers and rather 

cumbersome calculation of stresses is necessary for strength evaluation in the general case. This will 

clarify the form of a «uniform strength» composite elements in comparison with the known 

homogeneous analogs. 
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