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Abstract— This paper brief about the simulation of tapered photonic crystal fiber (PCF) LMA-8 
single-mode type based on correlation of scattering pattern at wavelength of 1.55 μm, analyzation of 
transmission spectrum at wavelength over the range of 1.0 until 2.5 μm and correlation of transmission 
spectrum with the refractive index change in photonic crystal holes with respect to taper size of 0.1 
until 1.0 using Optiwave simulation software. The main objective is to simulate using Finite-
Difference Time-Domain (FDTD) technique of tapered LMA-8 PCF and for sensing application by 
improving the capabilities of PCF without collapsing the crystal holes. The types of FDTD techniques 
used are scattering pattern and transverse transmission and principal component analysis (PCA) used 
as a mathematical tool to model the data obtained by MathCad software. The simulation results 
showed that there is no obvious correlation of scattering pattern at a wavelength of 1.55 μm, a 
correlation obtained between taper sizes with a transverse transmission and there is a parabolic 
relationship between the refractive index changes inside the crystal structure. 
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1.   Introduction 

 
Photonic crystals (PCs) have attracted much attention in the past two decades [1], [2]. It has 
become a key issue in material engineering to control the optical properties of materials. PCs are 
materials which have a periodic dielectric constant in three- orthogonal spatial directions. Based on 
variation in refractive index, PCs are classified as one-dimensional (1D), two- dimensional (2D) 
and three-dimensional (3D). Fig. 1(a-c) show the schematic illustrations for PCs where yellow 
colour indicate permittivity, ε at high region and pink colour indicate ε at low region. 

 
A complete band gap along all dimensions in space can be best realized in a 3D system in 
principle. However, 3D crystals with band gaps in the optical regime prohibit the progression of 
many applications which lead to the difficulty in fabricating. On the other hand, 2D PCs have 
been extensively studied because they provide the possibility to control the propagation of light 
yet remain comparatively easy to fabricate [3-5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1(a-c): From left: 1D-periodic in one direction, 2D-periodic in two directions and 
3D-periodic in three directions 

 

(a)                     (b)                   (c) 
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FDTD method has been developed and applied to the analysis and investigation of PCs [6-8]. By 
using an adaptive finite element method in time domain, 2D PC in-plane light propagation is 
investigated in this work. In the simulation model, both the transverse electric (TE) and transverse 
magnetic (TM) modes are considered as the polarization characteristics. The PCs’ dielectric 
function profile is discretizing by employed a finite-element method and calculating the in-plane 
band structures by applying eigenvalue equations with proper periodic boundary conditions 
following the Bloch theorem [9], [10]. A 2D PC is periodic in two directions (x,y) and 
homogeneous in the third (z). For light propagating in the xy-plane, we can separate the modes into 
two independent polarizations, TM and TE modes, and consider the band structure and photon 
density of states of each. The propagation properties of TM and TE modes can be characterized 
by the field components parallel to the rods, Ez(x,y) and Hz(x,y), respectively as show in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: The corresponding reciprocal lattice with irreducible Brillouin zone  
 

 

PCF is a new dielectric structure with a refractive index that varies periodically in the transverse 
plane, with a period of the order of an optical wavelength [11]. PCFs or known as microstructured 
optical fibers (MOFs) are dielectric optical waveguides having a complex air-silica cross-section. 
Due to the novel optical properties, silica PCFs, also known as holey fibers (HFs) have received 
considerable attention. By varying the size of air-holes, their number and position, PCF structure can 
be designed with desirable anomalous group velocity dispersion and modal properties [13][14]. All-
silica fiber consist of a solid core with the absence of an air-hole at the lattice site forms a region of 
raised refractive index, which is surrounded by microstructured cladding, that are typically 
hexagonally packed, with pitch, Λ (natural length of separation between the two nearest air-holes) and 
d, the air-hole diameter [15], [16] as can be observed in Fig. 4. 

 

 
 
 

 

Figure 3: Schematic of an index guided PCF  

[16] 

Figure 4: Cross section of 
triangular cladding PCF [15] 

[16] 
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Index guiding (IG) PCFs are made of undoped silica that provides very low losses, sustains high powers 
and temperature levels, and may withstand nuclear radiation [16]. Fig. 3 shows the IG of a waveguide 
consists of a solid core and a cladding with an array of air holes. The guided modes may be trapped in a 
core with a higher refractive index than an averaged index of the cladding. IG is guiding light by total 
internal reflection between a solid core and a cladding region with multiple air- holes. IG possess the 
especially attractive property of great controllability in chromatic dispersion by varying the hole 
diameter and hole-to-hole spacing [17], [18]. 

 
In this project, LMA-8 is chosen due to its commercially available. LMA-8-ultraviolet (UV) from NKT 
Photonics has a hexagonal lattice of air holes surrounding a solid core. LMA-8- UV is a custom fiber 
made from high-OH fused silica (Heraeus Quarzglas F110), with a core size of 8.6±0.5 mm and a cladding 
diameter of 240±2 mm. The cladding diameter of this fiber is larger than that of typical single-mode 
fibers; this reduces micro-bending, which can increase propagation losses at short wavelengths [19]. An 
optical micrograph of the fiber cross- section for LMA-8-UV is shown in Fig. 5 [20]. 

 
From manufacturer’s data, LMA-8 having Λ=5.6 μm and d/Λ=0.49 [21], [22], [23]. The results of 
LMA-8 PCF tapering are presented in this paper. The focus of the paper is on describing    fundamental    
properties    of    tapered    PCFs, characterization techniques that probe the air-hole collapse looking at 
the different index. 

 
 

 

 

 

Figure 5: An optical micrograph of the cleaved facet of an uncollapsed LMA-8- UV fiber. 
The pattern of holes which forms the PC can be seen in the centre. The guided mode 

propagates through the solid core in the centre of the array of holes [20] 
 

The paper is structured as follows: In Sect. II, the principle of tapering optical fibers are reviewed, and 
in particular, tapering of PCFs. The air-hole structure of PCF can be well maintained during tapering 
under certain conditions is demonstrated and a non-destructive method of probing and profiling the PCF 
microstructure along the taper are described. In Sec. III, the results and discussions of three main 
objectives are presented and discussed to correlate the scattering pattern of tapered LMA-8 at wavelength 
of 1.55 μm, to analyse the transmission spectrum of tapered LMA-8 at wavelength over the range of 
1.0 until 2.5 μm and to correlate the transmission spectrum with the refractive index change in PC holes 
with respect to taper size of 0.1 until 1.0. In Sec IV, an overall conclusion of the objectives are 
concluded and suggested recommendations are listed to achieve the objectives. 

 
 
 
  

2. Methodology 
 

The fiber taper geometry schematic is shown in Fig. 6. A standard flame brushing technique [24], in 
which the fiber is brushed with a butane flame while simultaneously stretched by motorized stages 
was applied. In the heated section of the fiber the viscosity decreases and the glass is allowed to flow 
during this process [25]. 
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Figure 6: The methodology flow chart Figure 7: Schematic of a 

fiber tapering rig 
 

 
The examination of the PCF microstructure has required the fiber to be cleaved for scanning 
electron microscope (SEM) analyses in the past. This process is time-consuming, destroys the taper 
and is most inappropriate for examination of the longitudinal variation in the microstructure although 
it yields accurate results [21]. Therefore, a novel transverse probing technique is used to analyze the 
internal structure along the PCF taper, non-destructively [25], [26], [27]. 
 
The periodic nature of the PCF microstructure is exploited and the transverse probing technique is 
illustrated in Fig. 7 . The PCF is sandwiched between two butt-coupled SMFs, coupled to a 
broadband source and an optical spectrum analyzer (OSA), and a transmission spectrum is measured 
transversely across the PCF. The PCF is sandwiched between two butt-coupled SMFs, coupled to a 
broadband source and an optical spectrum analyzer (OSA), and a transmission spectrum is measured 
transversely across the PCF. 
 
 

 

 

Figure 8: Schematic of the transverse probing technique. The tapered PCF is 
sandwiched between two SMFs, and the transmission is measured transversely 

across the taper [25] 
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Along the taper, the transverse transmission spectra are measured across different positions then in 
the pitch, the longitudinal variation can be profiled. In the transmission spectrum, the spectral 
features of PC microstructure are directly linked to the pitch, diameter and regularity of the holes 
which gives rise to partial photonic bandgaps [28]. By relating the measured bandgap wavelengths 
to the photonic band structure of the uniform array of holes, the local pitch can be inferred [29] 
obtained with plane wave expansion (PWE) calculations [25]. By measuring the transverse 
transmission spectra across different positions along the taper, the longitudinal variation in the pitch 
can be profiled. 

 
The purpose of simulating and collecting data using Optiwave simulation software over the taper 
size of 0.1 to 1.0 is to characterize the non-destructive technique. In this case, for an initial 
experiment, it is crucial to creating a taper size chart to categorize the spectrum pattern but first, we 
need to cut the PCF as the starting point or reference to correlate between the spectrum and its actual 
size. The actual size can be determined by using scanning electron microscope (SEM).  
 
This technique is used to ensure the simulation is consistent with the results reported in [25]. The 
next step is to do PCA and smoothing method using MathCad software. PCA is a technique used to 
emphasize variation and bring out strong patterns in a dataset and often used to make data easy to 
explore and visualize [30] meanwhile smoothing method is used to eliminate the noise so that the 
pattern will not be cluttered 
 

 
  

(a) (b) (c) 
Figure 9: (a) The scattering pattern design, (b) the transmission spectrum design of 2D photonic 
crystal structure measured along the г-M direction using Optiwave simulation software, (c) the 

material of refractive index 
 
As to achieve the second objective on the simulation of transmission spectrum, Bragg’s Law equation 
is used due to constructive interference occurred. The equation is shown in Fig. 9(d) where the 
calculation is in μm, where λ is wavelength, n is an integer, d is a lattice spacing, and we used maximum 
sin value of 1 respectively. When x-rays are scattered from a crystal lattice, peaks of scattered 
intensity are observed which correspond to the following conditions: 

� �  The angle of incidence = angle of scattering. 
� �  The  path  length  difference  is  equal  to  an  integer number of wavelengths. 

The condition for maximum intensity contained in Bragg's law above allow us to calculate details 
about the crystal structure, or if the crystal structure is known, to determine the wavelength of the x-rays 
incident upon the crystal. 

 

 

 

 

Figure 9: (d) The Bragg's Law illustration and formula 
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3. Results and Discussions 
 

Scattering is a technique used to observe the quality of the crystal inside LMA-8, meanwhile 
scattering pattern is pattern observed at a single wavelength. The first objective is to investigate the 
correlation of scattering pattern of tapered LMA-8 between taper ratios of 0.1 to 1.0 at a wavelength 
of 1.55 μm. The wavelength of 1.55 μm is chosen due to telecommunication wavelength.  
 
Fig. 10(a-b) shows the scattering pattern measured along г-M symmetry axis (Fig. 8) with TM-
polarised light at a wavelength of 1.55 μm where the x-axis is a spatial distance (μm) and the y-axis is 
the scattering (dB) respectively. 

 
Fig. 10(a-b) shows there is no obvious correlation pattern between the scattering of tapered LMA-8 
and taper ratio and Fig. 10(c-d) illustrated the observation area of Ey and Hx scattering pattern 
respectively from the Optiwave simulation software. PCA used to look at the correlation between the 
different pattern and Fig. 10(e-f) shows there is no trend and uncluttered PCA of both Ey and Hx 
respectively. All in all, it can be concluded that when LMA-8 is tapered, there is no relationship in the 
pattern, no bandgap and uncluttered PCA with respect to taper ratio. Hence, this scattering technique 
is not suitable to do at the internal structure of LMA-8. 

 
Table 1. Taper ratio indication from 0.1 to 1.0 

 
 

 
  

 

   (a)    (b)   
 

   (c)    (d)   
Figure 10 (a) Ey scattering pattern (b) Hx scattering pattern (c) (c) The observation area of 
Ey scattering pattern, (d) the observation area of Hx scattering pattern from the Optiwave 

simulation software 
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   (e)   (f)    
Figure 10: (e) The PCA of Ey pattern, (f) the PCA of Hx pattern 

 
The second objective is to analyze the transmission spectrum of tapered LMA-8 at a wavelength over 
the range of 1.0 until 2.5 μm. This can be done by first verification of previous technical paper [25] as 
shown in Fig. 11(a-b) to ensure the simulation is correct, then we proceed to analyze whether this 
transmission technique can be applied to LMA-8 or not. Fig. 11(a-b) shows the correct verification of 
the transverse transmission spectra of the LMA-8 PCF measured along the г- M symmetry axis (as in 
Fig. 8) with TM-polarised light with taper ratio over the range of 0.40 to 0.75 where x-axis represent the 
wavelength (μm) and the y-axis represents the transmission (dB). 

 
The PCF has a hole diameter-to-pitch ratio d/Λ of 0.70 and an initial pitch Λ of 1.28 μm. The bandgap 
shifts to shorter wavelength with decreasing taper size which is similar to the result of previous technical 
paper [25]. In this case, the bandgap shows that there is no transmission over the wavelength of 1 to 2.5 
μm. This is because the holes size, period and pitch are exceptionally small. The purpose of showing 
the transverse transmission spectra is to prove the fact that we can characterize the taper ratio through 
transverse transmission using the non- destructive technique without the need to cut the fiber by 
transversing the light across the LMA-8 PCF, the percentage and position of the point where the light can 
be transverse can be acquired. Fig 11 (b) illustrates that there is an obvious correlation between the 
transmission spectrum of previous technical paper with taper size. The similar result was obtained in 
LMA 8. 
 

Table 2. The indication of taper ratio of 0.4 to 0.75 respectively 
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(a) (b) 
Figure 11: (a) The transverse transmission spectra of previous technical paper with 0.03 smoothing 

 (b) The graph of center wavelength vs taper size 

 
Fig. 12(a-c) illustrates the transverse transmission spectra of tapered LMA-8 measured along the г-
M symmetry axis (refer to Fig. 7) with TM-polarised light at wavelength over the range of 1.0 until 
2.5 μm with respect to taper size of 0.2, 0.3 and 0.5 respectively where the x-axis is the wavelength 
(μm) and y-axis represent the transmission (dB). The selection of wavelength range between 1.0 to 
2.5 μm is due to the wavelength range of optical spectrum analyzer (OSA) inside the laboratory. 
 
By applying the Bragg’s Law, there is a correlation between the transmission spectrum of tapered 
LMA-8 with taper size. The bandgap wavelength was observed at a longer wavelength. Bandgap 
transmission occurred when there is no transmission and a reflection at the wavelength. It can be 
discussed that as the taper ratio increased, the bandgap moves towards a longer wavelength which is 
known as a red or infrared shift in terms of sensor. But if the bandgap move towards shorter 
wavelength, it is known as blue shift. This is because the crystal size and pitch of LMA-8 is double 
than the previous technical paper which is 5.6 μm pitch value and 0.49 d/λ value. To be concluded, 
the transmission spectrum technique is possible to characterize and correlate LMA-8 crystal with 
taper size. 

 

 
(a) 



9

1234567890‘’“”

International Conference on Applied Electronic and Engineering 2017 (ICAEE2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 341 (2018) 012002 doi:10.1088/1757-899X/341/1/012002

 
(b) 

 

 
(c) 

 
Figure 12: (a) The transverse transmission spectra of LMA-8 tapered at (a) 0.2 taper 
ratio observed a total of 3 bandgap(b) 0.3 taper ratio observed a total of 2 bandgap (c)  

0.5 taper ratio observed a total of 2 bandgap 

The third objective is to correlate the transmission spectrum of tapered LMA-8 with the refractive 
index change from 1.33 to 1.43 in photonic crystal holes with respect to taper size of 0.1 until 1.0. 
Fig. 13(a-b) illustrates the correlation of transmission spectra of LMA-8 measured along the г-M 
symmetry axis (as shown in Fig. 2) with TM-polarised light where x-axis represent the wavelength 
(μm) and the y-axis represents the transmission (dB) tapered at 0.5 and 1.0 respectively. Normally 
in sensing, the refractive index of distilled water which is 1.33 being used as a standard. We want to 
investigate on how much power being transferred at different taper size and refractive index from 
1.33 to 1.43. The reason on the selection range of refractive index is because we do not want the 
LMA-8 to be a high-power rod-type PCF and used for correlating material inside the crystal. 

 
To be concluded, there is a relationship between the transmission spectra with respect to taper ratio 
and there is a pattern on PCA (Fig. 13(c-d)). The two ways to analyze the relationship between 
the transmission spectrum with refractive index change in LMA-8 PCF holes are multispectral 
analysis and single spectra at 1.0, 1.5 and 1.9 μm wavelength. The multispectral analysis is 
analyzing and comparing the whole spectrum by using PCA. We observed that there is a trend 
between the index of the crystal holes with the value of principal component (Fig. 13(a-d)). 
Furthermore, principal component is a vector that is perpendicular to one another which represent 
in for X, Y and Z-axis. 

 
Meanwhile, Fig. 14 shows the correlation of a single spectrum at 1.0, 1.5 and 1.9 μm wavelengths 
with respect to the refractive index in the crystal holes. Based on the range of investigation, the 
gradient demonstrates the fact that a steeper curve at a wavelength of 1.0 μm will give the most 
sensitive sensor compared to 1.5 and 1.9 μm for un-tapered LMA-8. At 1.0 μm, the index change of 
0.01 causing a large change in normalized power meanwhile at 1.9 μm, the index change causes a 
small change in normalized power where sensitivity is ΔP over ΔN. ΔP denote as the rate of change 
of normalized power and ΔN is denoted as the refractive index change of LMA-8 crystal holes. 

 
It is advisable to use the transmission spectrum with respect to 1.0 tapered size. This proved that the 
LMA-8 PCF works equally well in tapered or un-tapered condition. Fig. 13(d) shows the parabolic 
relationship obtained which act as the standard reference of how LMA-8 being as a sensor by first the 
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LMA-8 being transverse propagate, then we analyzed the crystal structure by using PCA, afterward 
the spectrum reading obtained is 1.355 which falls in between 1.35 and 1.36 line of parabolic 
relationship. 
 
 

Table 3. The color indication and the value of refractive index change 

 
 
 

             

 

 

 
(a) (b) 

  
(c) (d) 

Figure 13:  The transmission spectrum vs refractive index change in LMA-8 crystal holes 
with respect to (a) 0.5 taper ratio (b) 1.0 taper ratio and PCA of transmission spectrum for (c)  

0.5 tapered  (d)  1.0 tapered 
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Figure 14: The correlation of a single spectrum at 1.0, 1.5 and 1.9 μm 

wavelength with respect to the refractive index in the crystal holes. 
 

 
4. Conclusion and Recommendation 

 
In summary, the advantage of scattering pattern and transverse transmission techniques is the 
capability to observe the diffraction pattern with light transverse and without having to cut the LMA-
8 to destroy the sample. We have demonstrated that the scattering pattern is not a suitable technique 
to model the LMA-8 PCF as there is no relationship in pattern and uncluttered PCA with respect to 
taper ratio of 0.1 to 1.0 at 1.55 μm wavelength. This is because the LMA-8 fiber has bigger crystal 
size and bigger pitch size. Thus, this technique is more suitable to be applied when the crystal size is 
very small. As for the analysis of the transmission spectrum, there is a relationship between the 
transmission spectra and taper ratio of 0.1 and 1.0 at a range of 1.0 to 2.5 μm wavelength. Hence, this 
technique can be used to observe the difference in taper size. We proved that the LMA-8 PCF works 
equally well in tapered or un- tapered condition for the correlation of the transmission spectrum 
against the refractive index change from 1.33 to 1.43 in LMA-8 crystal holes. As a conclusion, this is 
a totally new research to be investigated and would produce interesting findings. 
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