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Abstract. Fault detection in industrial process is a popular research topic. Although the 

distributed control system(DCS) has been introduced to monitor the state of industrial process, 

it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this 

paper, we proposed a novel method based on topological features and support vector 

machine(SVM), for fault detection of industrial process. The proposed method takes global 

information of measured variables into account by complex network model and predicts 

whether a system has generated some faults or not by SVM. The proposed method can be 

divided into four steps, i.e. network construction, network analysis, model training and model 

testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The 

results show that this method works well and can be a useful supplement for fault detection of 

industrial process. 

 

1. Introduction 

The problem of fault detection and diagnosis is an essential part of industrial process. It is very 

important for production. The methods of fault detection can be broadly classified into two general 

categories: model-based methods and data-driven methods. Generally speaking, the model-based 

methods need a priori knowledge or a specific mathematic model. However, it is very difficult for 

some industrial systems. Different from the model-based methods, the data-driven methods are only 

dependent on the monitored process variables. Thus, the data-driven methods have been extensively 

studied and developed over the past few decades. We will review some data-driven methods as 

follows. 

KNN(K-nearest neighbors) is a data-driven method used in fault detection. Xiong et al. [1] 

proposed an information fusion fault diagnosis method that is based on a static discounting factor and 

combines KNN with dimensionless indicators. Wang et al. [2] proposed a novel fault diagnosis 

method derived using KNN reconstruction on maximize reduce index (MRI) sensors. Tennessee 

Eastman (TE) process was provided to demonstrate that the proposed approach can identify the 

responsible variables for the multiple sensors fault. 

Support vector machine (SVM)[3] is also an approach used in fault detection. Wu et al. [4] 

provided a combined measure of the original SVM and PCA (principle component analysis) to carry 

out the fault classification, and compared its result with what is based on SVM-RFE (Recursive 

Feature Elimination) method. Mahadevan and Shah [5] proposed a new approach for fault detection 
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and diagnosis based on One-Class Support Vector Machines. Gao and Hou [6] propose a multi-class 

support vector machine based on process supervision and fault diagnosis scheme to predict the status 

of the TE process.  

Of course, there are many more data-driven methods for fault detection and we have not mentioned 

above, such as Decision tree classifier[7], Bayesian classifier [8], neural network[9], random 

forest[10], PLS (partial least squares)[11], and so on. 

However, conventional data-based methods have two problems. One problem is dimension 

reduction for large-scale industrial processes and the other is that this kind of methods do not consider 

the relationships among different measured variables and the effect of single measured variables on 

the overall performance of the system [12]. 

To solve the problems described above, we proposed a novel method, integrated complex network 

theory with support vector machine and apply it to Tennessee Eastman process(TEP) which is a well-

known typical industrial process. 

2. Methods 

The main principle of the proposed method is described in figure 1. 

 
Figure 1. The main principle of the proposed method for fault detection. 

From figure 1, we can see the detail of the proposed method. The start of the proposed method is 

original dataset, generally in form of multivariate time series. Then, the association network is inferred 

with SSPSTESGC [13, 14]. From the resulted network, some topological features are extracted and 

analyzed. Next, we will generate a features dataset which are composed of those topological features. 

This features dataset is considered as the sample of our selected classifier model which is SVM. Fault 

detection is a problem of classification. Thus, the features dataset is divided into training samples and 

testing samples. The training samples are used to train a SVM model. With the SVM model and 

testing samples, we can predict whether some faults have occurred in the observed system. The 

procedures of fault detection with the proposed method are described in detail as follows. 

2.1. Network inference 

Some essential methods for association network inference have been proposed for association 

networks inference, such as correlation [15], information theory [16], Granger causality (GC) [17], 

neural network [18], and so on. 

We have proposed SSPSTESGC for association networks inference in [13, 14] and the good 

performance have been proved by experiments. Thus, it is selected as a part of the proposed method in 

this paper. The main principles of SSPSTESGC are the small-shuffled surrogate (SSS) method 

proposed in [19-21] and the partial symbolic transfer entropy(PSTE) shown in [22]. 

The primary task for inferring a network is how to define the relations between nodes. PSTE has been 

proved properly for this work. It is defined conditioning on the set of the remaining time series

3 4{ , , , }nz v v v  and represented by Equation (1). 

 
2 1

1, 1, 2,

1, 1, 2,

1, 1,

ˆ ˆ ˆ ˆ( | , , )
ˆ ˆ ˆ ˆ( , , , ) log

ˆ ˆ ˆ( | , )

t t t t

v v t t t t

t t t

p v v v z
PSTE p v v v z

p v v z









 



   (1) 

where the rank vector ˆtz  is defined as the concatenation of the rank vectors for each of the embedding 

vectors of the time series in z . The partial symbolic transfer entropy can eliminate some of the 

indirect correlation and remain the pure or direct information flow between 2v  and 1v . 

Partial Symbolic Transfer Entropy Spectrum(PSTES) is defined as follows: 
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The PSTES between time series Y and X is composed of their many partial symbolic transfer 

entropy curves drawn in a rectangular coordinate system. The horizontal axis represents different time 

delays and the vertical axis represents transfer entropy. One of the transfer entropy curves is resulted 

from original data and other curves are resulted from shuffled data. 

2.2. Network analysis 

Many topological measures have been proposed for complex network studying. Topological measures 

can be divided in two groups, i.e., measures at global network level and measures at local node level 

[23, 24], corresponding to the measurable element. Since the observed object in our study is the 

network as a whole, only those graph-level measures will be selected. In other words, node-level such 

as the degree of a certain node will not be taken into account. The topological features selected in the 

proposed method include average degree(AD), diameter(DIA), average path length(APL), 

density(DEN), clustering coefficient(CLU), degree centralization(DC), closeness centralization(CC), 

betweenness centralization(BC) and eigenvector centralization(EC). 

2.3. Fault detection 

After the step of network analysis, we will fit a model of fault detection by SVM. The topological 

features dataset is randomly split into training and testing groups. The ratio of training dataset is 70% 

and the ratio of testing dataset is 30%. When fitting an SVM model, a parameter should be specified, 

i.e. kernel function. 

3. Results 

3.1. The description of TEP 

The TE process is a widely used realistic simulation program for chemical plants and has been widely 

accepted as a benchmark for control and monitoring studies [25, 26]. The process consists of five 

major transformation units: the reactor, the product condenser, the vapor-liquid separator, the recycle 

compressor and the product stripper.  

In our experiment, 22 process measurements [27] are selected as original dataset. The TE process 

contains 21 preprogrammed faults[28] which are described. These faults are divided into six types, i.e. 

step, random variation, slow drift, sticking, unknown and constant position. 22 data sets (1 normal data 

set and 21 fault data sets) are generated from the TE process. With a sampling interval of 3 minutes, 

960 observations are generated for each data set. All faults are introduced from the 161th observation.  

3.2. Fault detection of TEP 

3.2.1. Association network construction. In this section, the method SSPSTESGC [13, 14] will be used 

to infer the association network. The result of applying SSPSTESGC method is called PSTE spectrum 

between each pair of variables, such as two figures shown in figure 2 and figure 3. The value of 

horizontal axis is time delay and the value of vertical axis is PSTE. According the rule whether there is 

a relation from one variable to the other variable, we can conclude that X7 is influenced by X6 from 

figure 2 and X2 is not influenced by X1 from figure 3. 
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Figure 2. PSTE Spectrum from variable V6 to 

V7. 

Figure 3. PSTE Spectrum from variable V1 to 

V2. 

According to the PSTE spectrums and the rule of network construction, the network at each time can 

be inferred. For example, the network with normal state is shown in figure 4 and the network with 

fault 1 is shown in figure 5. There are some differences between the two networks. For instance, the 

core vertex with maximal degree is V6 in figure 4. In figure 5, the network changes with the 

occurrence of fault 1. The vertex with maximal degree changes to be V11. Additionally, there are 

some other differences between two networks. The degree of some vertex changes to be larger, such as 

V7, V16 and V22. However, the degree of V21 changes to be smaller. Moreover, some vertex changes 

from isolate vertex to normal vertex, such as V2 and V5. However, some vertex changes from normal 

vertex to isolate vertex, such as V1 and V9.  

 

Figure 4. The network with normal state at 

time point 181. 

 

Figure 5. The network with fault 1 at time 

point 181. 

3.2.2. Network analysis with complex network theory. Network features are calculated for each 

network and part of the results are shown in Table 1. The abbreviations SS represents the state of the 

system. This column has 22 different values, i.e. N (normal state), F1 (fault 1), F2 (fault 2) and so on. 

Table 1. The topological features extracted from association networks. 

ID AD DIA APL DEN CLU DC CC BC EC SS 

1 1 2 1.56 0.02 0.29 0.12 0.02 0.06 0.9 N 

2 1.27 2 1.48 0.03 0.44 0.14 0.02 0.05 0.89 N 

3 1.09 2 1.54 0.03 0.38 0.12 0.02 0.05 0.89 N 

4 1.73 4 2.18 0.04 0.12 0.23 0.05 0.21 0.87 F1 

5 2.73 4 2.2 0.06 0.18 0.46 0.07 0.39 0.86 F1 

6 2.36 4 2.07 0.06 0.43 0.29 0.06 0.26 0.82 F1 

7 0.64 3 1.67 0.02 0 0.06 0.02 0.02 0.86 F2 
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8 0.64 5 2.29 0.02 0 0.06 0.02 0.04 0.88 F2 

9 0.55 3 1.55 0.01 0 0.06 0.02 0.02 0.9 F2 

3.2.3. Fault detection and evaluation. In this section, we will carry out fault detection by applying the 

SVM algorithm to the network features extracted above. With the fitted model, we can predict the 

system state is either normal or abnormal on testing dataset. In order to assess the performance of the 

proposed method, we introduce into three measures, i.e. precision, recall and accuracy. 

The results of fault detection are shown in table 2. With the proposed method, precision is 0.84, the 

recall is 0.99 and the accuracy is 0.89. As a comparison, the performances of some other methods are 

also shown in table 2 As a whole, the proposed method is superior to the other five methods. 

Compared to precision, we pay more attention to the recall measure. 

Table 2. The model assessment and comparison. 

ID Method Precision Recall Accuracy 

1 NFSVM 0.84 0.99 0.89 

2 Naive Bayes 0.77 0.89 0.79 

3 KNN 0.78 0.92 0.81 

4 Decision Tree 0.79 0.95 0.84 

5 Random Forest 0.81 0.96 0.86 

6 Neural Network 0.79 0.96 0.85 

4. Conclusions  

In this paper, based on the complex network theory and SVM, we have proposed a novel method for 

fault detection of industrial systems. We applied the proposed method to TEP and the performance of 

proposed method is evaluated by three measures. As a result, the method makes a good performance 

on fault detection. However, there are still some topics that are worth studying in future.  
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