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Abstract. This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-

wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg 

represents  the condition when several machines are arranged in series and each job must be 

processed at each machine with same sequence. The objective functions are minimizing 

completion time (makespan), total tardiness time, and total machine idle time. Flow shop 

scheduling model always grows to cope with  the real production system accurately.  Since flow 

shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. 

One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is 

based on the behavior of a swarm. Originally, PSO was intended to solve continuous 

optimization problems.  Since flow shop scheduling is a discrete optimization problem, then, we 

need to modify PSO to fit the problem. The modification is done by using probability transition 

matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). 

The results of MPSO is better than the PSO because the MPSO solution set produced higher 

probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal 

solution  

1.  Introduction 

Flow shop is one of scheduling problems where the sequence is the same for all jobs. The original flow 

shop scheduling problem is a scheduling problem at a single production line (each process only has a 

machine). While the problem that occurs frequently in the real world is scheduling problem at a parallel 

production line (there is a process with more than one machine). That problem is one of flow shop 

scheduling problem development that is called hybrid flow shop scheduling problem. 

Flow shop scheduling model is not only grouped based on the number of production line, but also 

based on the characteristic of the product. There are some type of products such as a product that can 

wait for being processed at the next machine and a product that cannot wait. The basic model of flow 

shop scheduling problem does not consider the characteristic of the product (can wait or not). Therefore, 

that basic model is appropriate for the product that can wait for a long time (unlimited waiting time). 

While, the model for product that cannot wait is called no-wait flow shop scheduling problem [1]. 

Besides, there is a product that can wait for being processed at the next operation with limited waiting 

time, such as casting process that must be done before the material getting hardened. When using no-

wait flow shop scheduling model, the process are forced without idle time. The production sequence can 
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be different if there is a little idle time in the process. The model that is suitable for this characteristic is 

called limited wait flow shop scheduling problem. There are not many research carried out in this area.  

The main purpose of scheduling model development is finding the optimal production sequence. The 

optimal production sequence can be seen from some performance criteria, such as production time, 

tardiness time, and machine utility. Production time is minimized based on total time needed, without 

considering the job deadline. Tardiness time is minimized based on the positive difference between the 

job deadline and the job finishing time, without consider the total production time needed. Then, 

machine utility is maximized based on the minimum total idle time, without considering the total 

production time and tardiness time. There is a possibility for an objective function is not optimal when 

the other objective functions are optimized. Therefore, there is a trade-off when there are three objective 

functions. When we have trade-off among the criteria then we will have a multi-objective problem.  

Scheduling problem for n-job m-process at parallel line production is a combinatorial problem that 

classified into Non Polynomial-hard (NP-Hard) problem. The best method used to solve NP-Hard 

Problem is heuristic [2] . There were many research that using metaheuristic method to solve many type 

of flow shop scheduling problems, single objective and multi-objective problems. For example, hybrid 

flow shop scheduling problem solved by exact method, heuristic, and metaheuristics [3]. In this paper, 

it  does not consider limited wait constraint. There is a few research that consider limited wait constraint, 

i.e. [4] , [5] and , Su (2003) and [6].  

Particle Swarm Optimization (PSO) is easy to use and also efficient [7]. Originally, PSO was 

developed to solve continuous optimization problems. Since scheduling is a discrete problem, we need 

to modify PSO to fit the problem. The modifications are done by using transition probability matrix. As 

for handling the multiobjective, we use pareto optimal. The rest of the paper is organized as follows. 

Section 2 presents the problem definition, and Section 3 describes the literature review. Section 4 

discusses the mathematical model of the problem. In section 5, we explain the proposed algorithm, 

MPSO. In section 6, we describe the experiments, results and analysis. Section 7 concludes the paper. 

2.  Problem Definition  

This paper focuses on solving the limited wait hybrid flow shop scheduling (LWHFS) by using Modified 

Particle Swarm Optimization. The objectives used in this paper are minimizing total production time 

(makespan), minimizing tardiness time (total tardiness), and maximizing machine utility (minimizing 

total machine idle time). Since the original PSO is to solve continuous optimizaton problem, here we 

modified PSO to fit the discrete problem and also develop it to handle the multi-objectve case.  

3.  Literature Review  

3.1 Hybrid Flow Shop 

Hybrid Flow Shop Scheduling (HFS) problem is one of Flow Shop Scheduling problem extension. There 

are many types of HFS problems based on the characteristic of the problem. Generally HFS problems 

have following characteristics: 

 The number of process equals 2 or more. 

 The number of machine at each process equals 1 or more and the number of process that have more 

than 1 machine is minimum one. 

 Each job processed through the same sequence, but there is a possibility that some jobs are not 

processed at some operations. 

Research on flow shop scheduling problem usually imposes an assumption that each job is processed 

at all of operations. In some real production problem, sometime there is a missing operation. For 

example is the assembly process at stainless steel factory [8]. At that assembly process, some joint types 

do not need pre-processing, such that there are some jobs that do not need pre-processing. In this case, 

we refer to as hybrid flow shop scheduling problem because the job skip some stage without changing 

the others production sequence. 
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Limited wait is a constraint that restricts the waiting time between the operations. Waiting time means 

a reasonably long time when the product waits to be processed at the next operation. For example, the 

fabrication process of semiconductor wafer. The waiting time after processed at furnace tubes are limited 

to avoid particle absorption from the air [5]. That waiting time is counted from the product finished at a 

process until that product start being processed at the next operation. Because of this limitation, the 

limited wait constraint (equation 1) is adding to the main HFS model. 

S(i+1,j) - Cij ≤ U      
(1) 

 

where Sij is a start time of job j at operation i, Cij is completion time of job j at operation i, and U is 

a limitation of waiting time. The characteristics of HFS problem we solved in this paper are : 

 The number of machine at each process is more than or equal to one. 

 The waiting time for each job between the process are limited (limited wait constraints). 

 Some job may not be processed at some operations, but the sequence of the other process are same 

(missing operations). 

3.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is developed based on the behavior of the swarm (bird or fish). The 

individual movement is influenced by its individual (cognitif) and social (swarm) movements [9]. Each 

individual (particle ) is charaterized by velocity and position. Updating the velocity (v) and the position 

(x) of each particle based on its initial position, initial velocity, Gbest, and Pbest is done aording the 

following formula: 

𝑉𝑡 =  𝑉𝑡−1 +  𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑡) 
(2) 

 

𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑡 

 

(3) 

 

where Pbest is the best position of each particle  among iterations, Gbest is the best of Pbest. PSO is 

suitable used to solve continuous problem, because the value of position and velocity of all of particles 

are continuous numbers. The disadvantage of PSO is the possibility to be trapped at local optimal. The 

solution can be trapped at local optimal because of the updating solution only based on the best solution 

from previous iteration and the algorithm does not have a mechanism to jump out from the local optimal. 

The modification by changing the updating mechanism (based on some best solution) can reduce the 

possibility to be trapped at local optimal. The approach that can save some best solutions is pareto 

optimal. 

3.3. Multi Objectives 

Pareto optimal is an approach based on the dominance concept. This approach used to find a solution 

set that closest to the optimal solution (pareto front). The number of the solution set's member depend 

on the number of non-dominated solution that can be found. The most suitable solution for the real 

condition can be chosen from the solution set. Pareto optimal insure that each criteria or objective 

function get a same treatment, because there is no priority from each criteria [7][. This approach have 

been proven effective for solving multi-objective problem which each criteria have the same weight. 

Non-dominated solution is solutions that minimum have a better criteria than the others solution. 

When all of criterias are better than the others solution, the solution is a dominance solution. When all 

of criterias are worst than the others solution, the solution is a dominated solution. Non-dominated 

solutions will be added to the solution set, while the dominated solutions eliminated from the solution 

set and replace by the dominance solution. When there are some non-dominated solution at the solution 

set, a mechanism is needed to choose which is the best solution for generate new solutions. That 

mechanism is crowding distance. 
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Crowding distance used to measure the distance of a solution from other solutions. The bigger 

crowding distance will produce a better diversity [10]. The more far distance between the solution means 

that the solution set has better diversity and dispersion. When the solution dispersion is increasing, the 

probability to find the optimal solution is increasing too. Because of that, the solution with biggest 

crowding distance will be chosen. The steps to calculate crowding distance are shown below this [10]: 

1. Sorting the solution based on each criteria value. 

2. Based on the ranking at each criteria, calculate the distance for each criteria and each solution. The 

distance calculate based on this below equation. 

𝑑𝑘,𝑚 =
𝑓𝑘+1,𝑚 − 𝑓𝑘−1,𝑚

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛
 

(4) 

 

where k is the solution index, n is the number of solution set member, and m is the criteria index. The 

distance value of the first and the last solution are infinite so that solution always chosen [11]. The 

first and the last solution are the limitation of the solution range. So, when one of them isn’t chosen, 

the range of solution become smaller and the dispersion will be reduced. 

3. Calculate the crowding distance by summarizing the distance at each criteria. 

 

4. Mathematical Model  

The model used in this paper is the modification of those proposed by [12]. The development were done 

by adding and changing constraints to suit the missing operations and limited wait characteristics. The 

objective functions are minimizing completion time (makespan), total tardiness time, and total machine 

idle time. Those three objective functions have some weight and to be minimized simultaneously.  

i : operation index 

j : job index 

k : machine index 

Sij : starting time of job j at operation i 

Cij : completion time of job j at operation i 

pij : processing time of job j at operation i 

dj : due date of job j 

M : a very big number (big M) 

xijk : binary variable, 1 if job j processed by machine k at operation i and 0 if not 

yihj : binary variable, 1 if job h processed before job j at operation i dan 0 if not 

aij : binary variable, 1 if job j processed at operation i dan 0 if not 

𝑀𝐼𝑁 𝑓𝑝(𝑍1: 𝑍2: 𝑍3) 
(5) 

 

𝑍1 = 𝑚𝑎𝑥𝑖𝑗 {𝐶𝑖𝑗} 
(6) 

 

𝑍2 =  ∑(𝑚𝑎𝑥 {𝑚𝑎𝑥𝑖{𝐶𝑖𝑗} − 𝑑𝑗, 0})

𝑗

 
(7) 

 

𝑍3 =  ∑ (𝑚𝑎𝑥𝑖𝑗 {𝐶𝑖𝑗} − 𝑚𝑖𝑛𝑖𝑗 {𝑆𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑗𝑘)}

𝑘

− ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗𝑘

𝑗𝑖

) 

(8) 

 

𝐶𝑖𝑗 = (𝑆𝑖𝑗 + ∑ 𝑝𝑖𝑗𝑥𝑖𝑗𝑘

𝑘

) 𝑎𝑖𝑗  , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
(9) 

 

∑ 𝑥𝑖𝑗𝑘 = 𝑎𝑖𝑗

𝑘

, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
(10) 
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𝑆(𝑖+1)𝑗 ≥  𝐶𝑖𝑗, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 

 

(11) 

 

𝑆(𝑖+1)𝑗 − 𝐶𝑖𝑗 ≤ 𝑤𝑖𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
(12) 

 

𝐶𝑖𝑗 − 𝑆𝑖ℎ ≤  𝑦𝑖ℎ𝑗𝑀, ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐽, 𝑗 ∈ 𝐽, ℎ ≠ 𝑗 
(13) 

 

𝐶𝑖ℎ − 𝑆𝑖𝑗 ≤  (1 − 𝑦𝑖ℎ𝑗)𝑀, ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐽, 𝑗 ∈ 𝐽, ℎ ≠ 𝑗 
(14) 

 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 
(15) 

 

𝑦𝑖ℎ𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼, ℎ ∈ 𝐽, 𝑗 ∈ 𝐽 
(16) 

 

𝑎𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 
(17) 

 

Equation (5) is the multi-objective function to minimize Z1, Z2, and Z3 simultaneously. Equation (6) 

is the first objective function (Z1) to calculate makespan. Equation (7) is the second objective function 

(Z2) to count total tardiness. Equation (8) is the third objective function (Z3) to count total machine idle 

time. Equation (9) is to count the completion time of the job at each process. Equation (10) is to assure 

that each job at each operation is processed once by one machine. Equation (11) is to assure that the 

processing of the job at an operation is started after the predecessor process of that job finished. Equation 

(12) is to make sure that the waiting time between the process do not exceed the limitations. Equation 

(13) and (14) are to assure that each machine can process only one job at a time. Equation (15)-(17) are 

to make sure that the variable values are binary. 

 

5. Proposed Algorithm 

The proposed algorithm is an algorithm that combines PSO with probability transition matrix and pareto 

optimal. The algorithm is called Modified Particle Swarm Optimization (MPSO). The MPSO algorithm 

can be described as follows: 

1. Generate initial position and initial velocity for particles. Each initial position is in the form of  a 

probability transition matrix . The dimension of initial position and initial velocity respectively is N 

by p, where N is the number of particles and P is the number of jobs. 

2. Generate solution sequence based on the probability value of the transition matrix. Normalize first 

the probability transition matrix such that the row sum is equal to 0.  

3. Calculate the fitness function 

4. Find non-dominated solution (NDS) and update the pareto archive. The updating process based on 

some conditions as below : 

- If the new NDS be dominated by minimum one of pareto archive member, the pareto archive does 

not need an updating. 

- If the new NDS dominate one of pareto archive member or more, the new NDS are adding into 

the pareto archive and pareto archive member that dominated by the new NDS eliminated from 

the pareto archive. 

- If the new NDS does not dominate and is not dominated, the new NDS are adding to the pareto 

archive without eliminated pareto archive member. 

- If the size of the pareto archive exceeds the limitation, the pareto archive member are sorted by 

its crowding distance value, from the biggest value to smallest value. Pareto archive member 

which has smallest crowding distance value is eliminated until the size of the pareto archive does 

not exceed the limitation. 

5. Find Gbest and Pbest 

- Gbest are chosen from pareto archive member randomly. In the MPSO algorithm, Gbest for each 

particle may be different, it is not like in original PSO that each particle has same Gbest. 
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- Pbest is chosen by comparing the old Pbest and the new solution for each particle. When the old 

Pbest and the new solution are not dominated each other, the Pbest is chosen from one of them 

that has higher order ranking 

6. Updating the velocity use equation (18). 

 

𝑣𝑡 =  𝑣𝑡−1 +  𝑐1(𝑃𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑𝑜𝑚𝑡) + 𝑐2(𝐺𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑𝑜𝑚𝑡)                                   (18) 

 

7. Updating the probability value of transition matrix use equation (19). 

 

𝑟𝑎𝑛𝑑𝑜𝑚𝑡+1 = 𝑟𝑎𝑛𝑑𝑜𝑚𝑡 + 𝑣𝑡                                                                             (19) 

 

8. Checking the stopping criteria. If the stopping criteria is not reached, so the iteration repeated from 

the step 3. If the stopping criteria is reached, so the iteration stopped. 

 

6. Experiment 

Data sets used  in this experiment are from OR Library. The data sets hel1 (Heller, 1960) were 

modified such that we have three different data sets  

1. Data set flow shop (FS), dimension 10x10 (10 job 10 stage) with 1 machine at each stage. 

2. Data set hybrid flow shop 2 (HFS2), dimension 20x10 (20 job 10 stage) with 3 machines at each 

stage. 

3. Data set hybrid flow shop 3 (HFS3), dimension 30x10 (30 job 10 stage) with 3 machines at each 

stage. 

The experiments are done to evaluate performance of the algorithm. The proposed algorithm is used 

to solve some cases where characterized by the number of jobs and machines. Paramater used in this 

paper based on the results of the parameter testing in the preliminary experiments, i.e. population number 

(n) = 1000, maximum iterations (itmax) = 200, c1 = 0.3, c2 = 0.7, and the pareto archive size limitation 

is 10 percent of population number. There are many kind of performance metrics that can be used to 

know the quality of the solution set. The performance criteria that previously used in the research is 

shown below [13]: 

 General Distance Metric (GD) or convergence metric is distance between solution set and pareto 

front. 

𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
   

(20) 

 

 Spacing Metric (S) atau divergence metric is a dispersion measure of solution set 

𝑆 = √
1

𝑛 − 1
∑(𝑑 − 𝑑𝑖)2

𝑛

𝑖=1

 
(21) 

 

 Number of Non-Dominated Solution (NNDS)  indicates how many non-dominated can be found. 

The performance criteria used in this paper are the number of non-dominated, convergence metric, 

divergence metric, and computation time. The results of the experiment can be seen in Tables 1, 2, 3 

and 4. 

 

    Table 1. Computation time for different cases. 

Data Sets 

Average Computation 

Time (second) 

Minimum 

Computation Time 

(second) 

Maximum 

Computation Time 

(second) 

PSO MPSO PSO MPSO PSO MPSO 

FS1 410.6196 587.6464 396.5077 578.4517 439.0492 599.0126 
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FS2 453.5219 994.7531 448.7813 975.1563 458.375 1004.938 

FS3 578.5492 1314.6 576.4705 1306.4 580.3237 1325.3 

HFS1 371.4384 561.0381 365.7599 552.0875 377.5224 569.232 

HFS2 483.7687 907.4625 481.8281 903.6406 485.7031 911.6719 

HFS3 547.7273 1283.3 543.7259 1280.4 552.0719 1286 

LWFS1 464.9298 687.9551 456.1313 682.9724 474.243 694.7349 

LWFS2 537.7281 1041.422 534.2656 1015.328 541.0781 1055.672 

LWFS3 657.825 1458.575 651.6786 1440.3 662.2866 1469.2 

LWHFS1 437.9291 659.3694 434.9308 651.2886 440.656 666.1555 

LWHFS2 520.5719 1042.494 516.9063 1030.813 528.2188 1055.438 

LWHFS3 646.7372 1455.05 630.946 1448.8 655.7034 1465.2 

 

The NNDS shows the number of the optimal solution that can be found. The NNDS of MPSO's 

solution sets are more than the NNDS of PSO's solution sets. If the number of the NNDS is increasing, 

the probability to find the optimal solution is increasing too. It means that MPSO algorithm has bigger 

probability to find the optimal solution than PSO algorithm. The convergence metric shows the distance 

between solution set and optimal solution. The convergence metric of MPSO's solutions sets are fewer 

than the convergence metric of PSO's solution sets. If the convergence metric is decreasing, the solution 

sets is closer to the optimal solution. It means that MPSO algorithm can produce solution sets closer to 

the optimal solution than those of PSO algorithm. 

 

Table 2. The result of number of non-dominated solution (NNDS). 

Data Sets 
Average NNDS Maximum NNDS Minimum NNDS 

PSO MPSO PSO MPSO PSO MPSO 

FS1 46.6 44.6 51 54 43 34 

FS2 70.6 56.4 89 68 39 38 

FS3 7.25 24.25 13 39 4 10 

HFS1 36.2 39 39 45 35 32 

HFS2 50 53 66 79 37 31 

HFS3 47.75 50.75 66 76 38 23 

LWFS1 39.4 42 41 47 37 39 

LWFS2 71.2 62.6 81 93 46 43 

LWFS3 5 26 6 32 3 20 

LWHFS1 9.6 19.8 15 32 5 14 

LWHFS2 17.2 28.2 29 35 4 11 

LWHFS3 5.25 33 8 42 3 29 

  

Table 3. The result of convergence metric. 

Data set 
Average 

Minimum 

convergence 

Maximum 

convergence 

PSO MPSO PSO MPSO PSO MPSO 

FS1 18.69064 19.74676 17.9344 18.0728 19.1383 22.2714 

FS2 15.83864 19.36146 13.9196 16.9493 20.3738 23.899 

FS3 40.2946 24.75198 28.7164 19.6508 49.5226 33.0869 
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HFS1 20.12258 19.72883 19.4348 18.7562 20.4303 21.2668 

HFS2 16.81366 18.78364 14.482 15.1776 18.5806 24.0503 

HFS3 14.32188 15.58568 11.6963 11.7155 16.7184 21.7906 

LWFS1 20.89856 20.2554 20.3979 18.9415 21.7414 20.9456 

LWFS2 16.01526 19.08602 15.0727 15.0646 19.0826 22.2889 

LWFS3 46.77843 21.79778 40.7414 19.6466 59.0604 24.5089 

LWHFS1 43.23386 29.95048 32.7506 22.6481 56.9076 33.5503 

LWHFS2 38.25176 29.83808 22.7312 25.5861 62.7081 41.4912 

LWHFS3 45.38035 18.1212 34.1204 15.6371 54.7496 19.0556 

 

The divergence metric shows the dispersion of solution sets. The divergence metric of MPSO's 

solution sets are more than those of PSO's solution sets. If the divergence metric is decreasing, the 

dispersion of solution sets is better. It means that MPSO algorithm cannot produce solutions sets better 

than the solution sets produced by PSO algorithm. The modification by adding the transition matrix to 

PSO make the MPSO algorithm needed much time to find the optimal solution. This is disadvantage of 

MPSO algorithm compared to PSO algorithm. But, MPSO algorithm also has advantage that is the 

quality of the solution is better than the solution produced by PSO algorithm. The solution of MPSO 

algorithm is better, because it has bigger probability to find optimal solution and produce solution sets 

that closer to the optimal solution. 

 

Table 4. The results of divergence metric. 

Data set 
Average 

Minimum 

Divergence 

Maximum 

Divergence 

PSO MPSO PSO MPSO PSO MPSO 

FS1 3.52396 5.21076 2.5495 3.4303 5.3137 7.6514 

FS2 8.44268 8.91154 3.1566 4.9111 20.3184 12.3185 

FS3 6.0442 6.797925 3.4641 2.7889 8.8918 16.9039 

HFS1 6.8421 6.6502 4.6557 3.877 13.9267 8.4275 

HFS2 3.94416 5.75744 2.4305 2.991 8.5563 7.9315 

HFS3 5.891475 6.169175 3.0623 3.743 8.9818 7.841 

LWFS1 4.04944 5.03074 3.2364 3.208 5.882 7.8089 

LWFS2 9.04326 8.83724 4.6961 5.5712 12.9217 11.3803 

LWFS3 10.028 7.69615 2.6833 5.2942 19.9575 10.7271 

LWHFS1 15.12552 7.25384 8.8428 3.1557 25.026 15.495 

LWHFS2 10.37906 9.31244 5.6195 5.3377 16.2384 19.3111 

LWHFS3 7.6178 7.9582 5.0709 6.0333 9.815 11.5819 

 

7. Conclusion 

MPSO algorithm has been successfully developed to solve the multi-objective discrete problem. It can 

solve some type of flow shop scheduling problems, i.e. flow shop scheduling, hybrid flow shop 

scheduling, limited wait flow shop scheduling and limited wait hybrid flow shop scheduling problems. 

All of those are multi-objective problems with three objective functions (i.e minimizing makespan, total 

tardiness, and total machine idle time). Furthermore, this algorithm can be applied to solve other type 

of scheduling problems. The modification of PSO by adding transition matrix making the MPSO 

algorithm is more efficient than the original PSO. Although MPSO algorithm required longer computing 

time, the quality of solution sets are better than those of original PSO. Though the dispersion of solution 



9

1234567890‘’“”

International Conference on Industrial and System Engineering (IConISE) 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 337 (2018) 012006 doi:10.1088/1757-899X/337/1/012006

 

 

 

 

 

 

sets are not better, but the distance of solution sets are closer to the optimal solution. The distance 

between solution sets and the optimal solution is more important than the dispersion of solution sets. 

MPSO algorithm still can be further developed so it has a new mechanism of generating initial solution, 

updating solution, and stopping criteria that can reduce the computation time. When the computation 

time reduced, MPSO algorithm perfectly can be better than the original PSO algorithm. 
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