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Abstract. A deterministic mathematical model is formulated to investigate the transmission 

dynamics of rabies. In particular, we investigate the effects of vaccination, carrying capacity 

and the transmission rate on the rabies epidemics and allow for uncertainty in the parameters. 

We perform crisp and fuzzy approaches. We find that, in the case of crisp parameters, rabies 

epidemics may be interrupted when the carrying capacity and the transmission rate are not 

high. Our findings suggest that limiting the growth of dog population and reducing the 

potential contact between susceptible and infectious dogs may aid in interrupting rabies 

epidemics. We extend the work by considering a fuzzy carrying capacity and allow for low, 

medium, and high level of carrying capacity. The result confirms the results obtained by using 

crisp carrying capacity, that is, when the carrying capacity is not too high, the vaccination 

could confine the disease effectively.   
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1. Introduction 
Rabies is a zoonotic disease that is transmitted to humans via an animal bite in particular dogs. It is 

estimated that approximately 55,000 cases happens annually, with higher number of cases in Asia and 

Africa [1]. Rabies is also a problem in several places in Indonesia such as Bali and Flores islands [2, 

3]. The fatality rate can reach 100 % once symptoms of disease develop. 

A number of control measures such as mass vaccination and culling have been implemented 

to stop rabies epidemics, but they are not perfectly effective. For example, in Flores Island, Indonesia, 

although vaccination has been implemented [3], rabies cases are still found. This is likely due to low 

vaccination uptake level [4]. Therefore, this paper aims to investigate the dynamics of rabies 

transmission with vaccination strategy.    

   A mathematical model can be used to investigate the dynamics and the effectiveness of the 

intervention on reducing disease transmission [5-13]. A number of mathematical models have been 

developed to understand the rabies epidemics [14-18]. Huo et al. used a mathematical model to 

investigate rabies epidemics and found that vaccination rate is one of the key components determining 

rabies transmission [17]. Zinsstag et al. developed a mathematical model to investigate the 
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transmission dynamics. They found that a 70% vaccination coverage level is sufficient to interrupt 

rabies epidemics [18]. In this paper, we develop a mathematical model to investigate rabies epidemics 

by including carrying capacity and allowing intrinsic stochasticity in the transmission rate. We explore 

the effects of carrying capacity and the transmission rate on rabies epidemics. We extend the work by 

considering fuzzy carrying capacity to investigate the effect of uncertainty on the dynamics of rabies 

transmission. 

This paper is organized as follows. Section 2 presents a formulation of mathematical model. 

Section 3 presents the parameter exploration, and finally results and discussion are presented. 

2. Model Formulation  

A deterministic ordinary differential equation model is developed for the transmission of rabies for 

dogs.  The dog's population is divided into four compartments: Susceptible (S), Exposed but not yet 

infectious (E), Infectious (I) and Vaccinated (V). In this model, dogs remain infectious except if they 

are vaccinated. Therefore, no recovered class is included.  

Dogs are born susceptible and their growth is limited by carrying capacity, C. Rabies is 

transmitted to susceptible dogs at rate � when there is a contact between infectious and susceptible 

dogs. The parameter �  is the transmission rate, which is the contact rate between susceptible and 

infectious dogs, and the probability that contact successfully transmits disease.  The susceptible dogs 

get vaccinated at a rate g and die due to natural death at rate d. The exposed dogs progress to 

infectious class at rate �, and die because of natural death rate, �, and disease related death, ��. The 

vaccinated dogs loss immunity at rate I, which is then re-susceptible to the virus.  

The model is then governed by the following system of differential equations:   

���� = 	
�1 − 
/�� − �� − �� − ��� + �� 
(1) 

���� = �� − �� − �� − ��� 
(2) 

���� = �� − �� + ���� 
(3) 

���� = ���� + �� − �� − �� 
(4) 

where � = ��, and the total dog population is � = � + � + � +  . 

3. Crisp Approach 
Since most parameter values of the model are largely unknown, we explore different parameter values 

to understand their effects on the dynamics of rabies epidemics. First, we explore different values of 

carrying capacity and vaccination coverage level. Then, we investigate the effects of the transmission 

rate on the rabies epidemics by allowing intrinsic stochasticity in the transmission rate.  In our 

exploration, we use carrying capacity 5 × 10$, which is around two times the number of dogs in 

Flores island, Indonesia [3], 7.5 × 10$ and 10', and vaccination coverage level of 50 %  and 75 %. 

The parameter values are given in Table 1. 

 In our investigation of stochasticity in the transmission rate, we assigned 1000 different sets of 

normally distributed transmission rates as   ( = () + *+
�0,1� 

where () is the average transmission rate, *+ is the variance, and 
�0,1� is a Gaussian random 

variable with a mean of zero and variance equal to one. The values of the parameters () and *+ are  10-$ and  10-', respectively. 
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Table 1. Parameter descriptions, value and sources. The transmission rate, (, carrying capacity, �, and vaccination coverage level, �,  are explored in this paper 

 

Parameters Description Value Unit Sources ( Transmission rate 10-$ year-2 Assumed 	 Birth rate 0.013 × 52 year-2 [18] � Carrying capacity 5 × 10$ N/A see text for explanation � Natural death rate 0.006638 × 52 year-2 [18] �� Disease-induced death rate 1 year-2 [19] � Vaccine efficacy  0.94 N/A [18] � Vaccination coverage level 0.5 year-2 Explored � Vaccination loss rate 0.0081 × 52 year-2 [18] � Progress from exposed to 

infectious class 
12/3 year-2 [1] 

 

In exploring the effects of carrying capacity and vaccination coverage level on rabies epidemics, 

we found that when carrying capacity is higher, an outbreak occurs although the vaccination 

coverage level is high (see Figure 1). For example, if carrying capacity is 7.5 × 10$ and vaccination 

coverage level is 75%, an outbreak can still occur, with around 1.98 × 109 cases. The same 

behaviour is found when carrying capacity is 10'. A 50% vaccination coverage level is sufficient 

to stop rabies epidemics if the carrying capacity is low (5 × 10$�. If the carrying capacity is 

higher, a higher vaccination coverage level is not sufficient to stop rabies epidemics because of 

higher number of dogs the population. Carrying capacity affects the growth of dog population. If 

carrying capacity is high, it is likely that there will be many dogs in the population. Therefore 

our findings imply that limiting the growth of dogs is necessary in order to interrupt rabies 

epidemics.  

 When investigating the effect of the transmission rate with intrinsic stochasticity, we are 

interested in situations where an outbreak occurs. Therefore, in our exploration, we use carrying 

capacity of 7.5 × 10$ and 10'. We found that the average outbreak size is  1.9 × 109 ± 1.96 ×140.63 if ; = 7.5 × 10$ and the vaccination coverage level is 50%. If ; = 10' and the vaccination 

coverage level is 50%, the outbreak size is  3.6341 × 109 ± 1.96 × 78.18 . The outbreak sizes are of 

similar range as when the transmission rate is fixed. This may suggest the role of carrying capacity 

determining rabies epidemics is a bit stronger than the transmission rate. Table 2 and 3 show 

the number of infected dogs at time � = 50  (Table 2) and � = 100  (Table 3) for various values of 

carrying capacity with the crisp classification (low, medium, and high carrying capacity). 

 

Table 2. The number of infected individuals with different carrying capacity (C) and vaccine 

scenarios at t = 50. The values for low ��=>?�, medium (�@ABCD@� and high E�FCGFH carrying 

capacity are 5 × 10$, 7.5 × 10$,  and 10', respectively. 

 

 Different Vaccine Scenarios 

No Vaccination 50% 75% 

Clow 1.7297 × 109 0.0908 1.8 × 10-$ 
Cmedium 3.0203 × 109 1.9826 × 109 1.788 × 10I 
Chigh 3.9322 × 109 3.6835 × 109 2.9270 × 109 
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Figure 1. Plot of infectious dogs vs. time with different vaccination coverage levels. The top, 

middle and bottom plots are for C = 5 × 105, 7:5 × 105, and 106, respectively. 

 

Table 3. The number of infected individuals with different carrying capacity (C) and vaccine 

scenarios at t = 100. The values for low ��=>?�, medium (�@ABCD@� and high E�FCGFH carrying 

capacity are 5 × 10$, 7.5 × 10$,  and 10', respectively. 

 

 Different Vaccine Scenarios 

No Vaccination 50% 75% 

Clow 1.7269 × 109 0.0269 6.3 × 10-22 
Cmedium 3.0347 × 109 1.979 × 109 8.350 × 10I 
Chigh 3.9018 × 109 3.6836 × 109 2.9162 × 109 

 

4. Fuzzy Approach 

The number of infected individuals with crisp carrying capacity and initial conditions � = 50,  � =1.5 × 10$ and � = 0= 50, are given in Tables 2 and 3. In reality the exact value of carrying 

capacity is strongly uncertain and hence it is difficult to be determined. In the following 
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discussion we assume that there are three different levels of carrying capacity: low, medium, 

and high. However, there is no clear way to classify the numerical values of these carrying 

capacities into the low, medium, and high category. The numerical value of the boundary 

between the carrying capacity category is blur. To model the levelling of the carrying capacity, 

we use the fact that the carrying capacity level of 7.5 × 10$ is regarded as the medium carrying 

capacity level. We then use triangular and trapezoidal fuzzy number to make classification. The 

membership function of the Triangular and Trapezoidal fuzzy number used in the simulation (in 10$
 

individuals) are  

 

J=>?��� = K 1,         LM � ≤ 5� − 7.55 − 7.5 , LM 5 < � ≤ 7.50,              P�ℎRSTLUR  

 

J@ABCD@��� =
VWX
WY 0,            LM � ≤ 5 � − 57.5 − 5 ,             LM 5 < � ≤ 7.5 � − 107.5 − 10 ,           LM 7.5 < � ≤ 10 0,             P�ℎRSTLUR

 

 

JFCGF��� = K 0,            LM � ≤ 7.5� − 7.510 − 7.5 ,         LM 7.5 < � ≤ 101,              P�ℎRSTLUR  

 

The graph of these fuzzy numbers is presented in Figure 2. 

 

 
Figure 2. The graph of low-, medium-, and high- level of carrying capacities membership 

function (in red, blue, and black color, respectively). Horizontal line is in 10$
 individuals. 

The number of the infectious dogs when there is no vaccination is presented in Figure 3, for low-, 

medium-, and high- level of carrying capacities. It is clear that the higher the carrying 

capacity, the higher the number of infectious dog population. Figures 4 shows the resulting 

infectious dog populations when there is 50% and 75% of vaccination respectively. The left part 
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Figure 3. The graph of infectious dog population numbers at � = 50  (solid) and � = 100 (dashdot) 

for low-, medium-, and high- level of carrying capacities membership function (in red, blue, 

and black color, respectively) in the absence of vaccination. The initial values are crisp initial 

values � = 50 , � = 1.5 × 10$ and � = 0. 
of Figure 4 shows the graph of infectious dog population numbers at t = 50 (solid) and t = 100 

(dash-dot) for low-, medium-, and high- level of carrying capacities membership function (in 

red, blue, and black color, respectively) for 50% vaccination rate. The graph for t = 50 and 

t = 100 coincide, showing that the population is reaching equilibrium. The initial values are the 

same as in the crisp approach, which are � = 50 , � = 1.5 × 10$ and � = 0.  The right part of 

Figure 4 shows the same thing as in the left part but for 75% vaccination rate at t = 50 (solid) 

and t = 100 (dash-dot). All centroid are lower than that for 50% vaccination indicating the 

more effective vaccination. The centroid for the low carrying capacity is close to zero. 

 

Figure 4. Infected dog population with 50% (left) and 75% (right) vaccination coverage. 

5. Conclusions 
In this paper, we develop a simple mathematical model and investigate the dynamics of rabies 

epidemics using crisp and fuzzy approaches to capture uncertainty in the parameters. We found 

that the results are similar for both approaches. That is, rabies epidemics may be interrupted 

when the carrying capacity and the transmission rate are not high. Given the complexity of 

rabies epidemics, a mathematical model for rabies epidemics incorporating human population 

and other control measures such as culling can be developed to understand the transmission 

dynamics of rabies. Furthermore, a spatial model can also be formulated to understand the 
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spread of rabies. In general, our findings suggest that if the growth of dog population is limited 

and the potential contact between dogs is reduced, they may help to stop rabies epidemics.  
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