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Abstract. In managing the risk of credit life insurance, insurance company should 

acknowledge the character of the risks to predict future losses. Risk characteristics can be 

learned in a claim distribution model. There are two standard approaches in designing the 

distribution model of claims over the insurance period i.e, collective risk model and individual 

risk model. In the collective risk model, the claim arises when risk occurs is called individual 

claim, accumulation of individual claim during a period of insurance is called an aggregate 

claim. The aggregate claim model may be formed by large model and a number of individual 

claims. How the measurement of insurance risk with the premium model approach and whether 

this approach is appropriate for estimating the potential losses occur in the future. In order to  

solve the problem Genetic Algorithm with Roulette Wheel Selection is used. 

Keyword: risk, claims, aggregation claims, collective risk model, genetic algorithm 

1.  Introduction 

A type of life insurance quite developed in Indonesia is credit life insurance. Every customer of this 

insurance policy holder receives compensation afforded by the insurance company in case of death in 

accordance with the contract of agreement. In providing guarantee to the policy holders, the insurance 

company must prepare funds to anticipate the occurrence of claims from policyholders [2].  

In managing risk insurance companies should acknowledge characteristic of the risk to predict 

future losses. These risk characteristics can be learned in a claim distribution model. There are two 

standard approaches to establish a model of claim distribution over the insurance period e.g. the 

collective risk model and individual risk model. 

In collective risk model, claim that arise when risk occurs is called individual claim, the 

accumulation of individual claims during period of insurance is called an aggregate claim. The 

aggregate claim model can be developed using the large model and the number of individual claims. 

Model-based approach should be considered as context of the objectives of each given problem. 

Many problems in actuarial science involve development of mathematical models that can be used to 

predict or forecast future insurance costs. The model is a simplified mathematical description built on 

the knowledge and experience of an actuary combined with data from the past. Data guides the actuary 

in selecting the model form as well as calibrating an unknown number, usually called a parameter. 

This model provides a balance between simplicity and conformity with existing data. Simplicity is 

measured in terms of unknown parameter factors (the fewer the simpler); Compliance with data is 
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measured in terms of discrepancies between data and models. The selection model is based on a 

balance between two criteria, namely conformity and simplicity. 

Determination of using the model should consider several things such as decision-making based 

on empirical evidence. The empirical approach assumes that the future can be expected just as it has 

happened in the past, perhaps adapted to trend such as inflation[11]. How to measure insurance risk 

with the premium model approach and whether this approach is appropriate for estimating the 

potential losses incurred in the future. 

2.  Research methodology  
The models used in the development of claims distribution model and the calculation of risk of term 

life insurance using the claim distribution model, Collective Modified Value-at-Risk Model (CMVaR). 

2.1.  Claim distribution model 

The claim distribution is assumed to follow the geometric distribution model. If N is a random variable 

of the claim frequency with a value of n, and p is the probability parameter of the occurring claim, 

then the probability function of the claim event is [1],[13]. 
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where q = 1 - p is the parameter of no claim. The generating function of equation (1) is [9], [4]: 

( )
(1 )

t

N t

pe
M t

qe
=

−
 

For large claim it is assumed to follow the Gamma distribution. If X is given a large random 

variable of claim with value x, and α and β is the parameter of gamma distribution, then the 

probability density function of the distribution of the claim is [1], [12]: 
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whereas the moment generating function to k of the equation (2) is 
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2.2.  Collective risk model 

For collective risk models, a random process assumption that claims to be sustainable in the insurance 

policy portfolio can be used. Generally can be formulated [10] by defining the random variable S is the 

number of claims occurring from the risk within a year. Random variable N is the number of claims of 

risk in this year, Xi' random variable is the number of claims incurred. The number of aggregate claims 

is the number of individual claims, as the formula below: 
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while the conditional Expectation value is: 
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thus, the variance is: 
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2 1[ | ] ( )Var S N N m m= − , therefore this conditional variance of (3) is : 
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 If it is assumed that { }
1i i

X
∞

=
 distributed identically and independently, the moment function of 

equation (3) can be expressed as [1] 

( ) [{ ( )} ] [ {log{ ( ) ] ( )log ( )]N N
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where MS is expressed in terms of MN(t) and MX(t), and S is the random variable to the magnitude of 

the aggregate claim. 

2.3.  Collective value-at-risk 

According to Dowd [5] and Yildrim [14] and Sukono [12], Value-at-Risk (VaR) is a measure of 

market risk, which means when invested initial capital of Vo, on market assets with normal distributed 

returns with µ  and standard deviation σ, will have maximum potential loss is 0
( )

c
VaR V zµ σ= − + , 

where cz  percentile and standard normal distribution at significance level (1 – c) %. Collective Value-

at-Risk (CVaR) is the development of the application of Value-at-Risk principle which is an 

alternative measurement of aggregate claim risk as equation (3). Then CVaR can be formulated as 

follows: 

1/2 2 2 1/2

0 0 1 2 1 1( [ ] { [ ]} ) ( [ ] { [ }( ) [ ] )
c c

CVaR N E S z VaR S N E N m z E N m m Var N m= − + = − + − +ɶ ɶ  

where is : 0Nɶ  is a lot of claims that occur, the sign minus ( − ) states losses (losses) [3]. 

2.4.  Collective modified value-at-risk 

According to Dowd [5], Guarda, et.al [7] and Iqbal, et.al [8], market assets are not normally 

distributed, their expansion by providing a factor adjustment to the estimated percentile, with the 

adjustment given from normality is small called Cornish Fisher. The expansion of Cornish Fisher is 

expressed as follows: 

2 3 3 2 1/ 2
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{ [ ]} ( ( 1) [ ] ( 3 ) [ ] (2 5 )( [ ]) )( [ ]) }

6 12 36c c cc c cC M VaR N E S z z S z z K S z z S Var Sς ς= + + − + − − −ɶ  

Where : 

E[S]  = mean    Var[S] = variance 

ζ[S]  = skewness    κ[S] = kurtosis 

Zc  = normal distribution percentile 

2.5.  Genetic algorithms  

The purpose of the algorithm is to dynamically determine the distribution of life insurance claims and 

certain restrictions to minimize risk. The claim distribution structure using genetic algorithms (GA) 

can be seen in the following figure: 

 

 

 

 

Figure 1.  GA structure for CMVAR 

Brief description of Figure 1. 

Genetic Algorithms in general the structure to be implemented is as follows [6]: 

a. Generate the initial population 

GA X α, β, CMVaR 
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 This process is a process used to generate the initial population at random to obtain an initial 

solution. This initial population is generated randomly so that the initial solution is obtained. The 

population itself consists of a number of chromosomes that present the desired solution. 

b. Evaluation of fitness 

This process is a process for evaluating each population by calculating the fitness value of each 

chromosome and evaluating it until it is met the stop criteria. An individual is evaluated based on 

a certain function as a measure of its performance. In natural evolution, individuals with low 

fitness value will die. 

c. Selection: 

Selection process is a process to determine which individuals will be selected for crossover. There 

are several types of selection methods commonly used, such as: The method that mimics a 

roulette-wheel game where each chromosome occupies a circle cut on the roulette wheel 

proportionately according to its fitness value. Selection Ranks the process begins by ranking or 

chromosome sequencing in the population based on their fitness then assigning a new fitness value 

based on the sequence. In this problem the selection method used is the roulette wheel selection. 

d.  Crossover 

 This crossover process is a process to increase the diversity of strings in one population. Crossover 

operators have the most important role in the genetic algorithm because there is a process of 

marriage (crosses) of genes between two individuals (parent) that produce two new individuals 

(offspring) in the next generation. 

e.  Mutation 

 Mutation is the process of changing the value of one or more genes in a chromosome. Mutations 

create new individuals by modifying one or more genes in the same individual. Mutations act to 

replace lost genes of the population during the selection process and provide genes that are absent 

in the initial population. 

f.  Criterion stopped 

Stop criteria are the criteria used to stop the genetic algorithm process which is the goal to be 

achieved from the process. 

g.  Results 

The result is an optimum solution obtained by using Genetic Algorithm. 

 

The application of roulette wheel selection method in credit risk adjustment modeling is as to : 

a. Generate initial population 

All possible risks of claims are employed by permutation coding techniques which are 

subsequently taken by some random claims. Claims taken randomly form the first population in 

the first generation and so on down to the last generation. The population is a set of chromosomes 

consisting of k genes representing xi = 1,2, ... 64, numbers, where xi is the number of claims 

occurring on i. The population was initially randomly using native code. 

x1 x2 ……………………. x64 

Figure 2. Chromosome structure 

b.  Determining fitness value 

After generating the initial population the next step is to determine the fitness value of each 

individual formed. Each individual is calculated the risk value of his claim. To calculate the fitness 

value by the formula: 

( ) ( ), 1, 2, ..., 64keval v f x k= =  

To find the minimum value then: 

1
( )keval v

x
=  where x = the claim value of each individual 
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With the help of matlab software, determined the fitness value of individuals big claims and many 

claims. Fitness value as follows 

 
Table 1. Fitness Value 

Individual 
Fitness Value 

Claim Large 

Fitness 

Value Many 

Claims 

 

Individual 
Fitness Value 

Claim Large 

Fitness 

Value Many 

Claims 

1 0.0000000401 1.00  33 0.0000000019 0.08 

2 0.0000002042 1.00  34 0.0000000073 0.50 

3 0.0000000120 0.33  35 0.0000000257 0.25 

4 0.0000000191 0.33  36 0.0000000064 0.17 

5 0.0000000067 0.20  37 0.0000000076 0.25 

6 0.0000000150 0.50  38 0.0000000104 0.50 

7 0.0000000026 0.25  39 0.0000000091 0.25 

8 0.0000000123 0.50  40 0.0000000043 0.14 

9 0.0000000031 0.09  41 0.0000000045 0.20 

10 0.0000000038 0.17  42 0.0000000052 0.25 

11 0.0000000067 0.20  43 0.0000000060 0.25 

12 0.0000000022 0.11  44 0.0000000135 0.33 

13 0.0000000054 0.14  45 0.0000000022 0.11 

14 0.0000000022 0.13  46 0.0000000204 0.50 

15 0.0000000063 0.20  47 0.0000000091 0.20 

16 0.0000000117 0.20  48 0.0000000468 1.00 

17 0.0000000118 0.33  49 0.0000000189 0.33 

18 0.0000000060 0.20  50 0.0000000563 1.00 

19 0.0000000027 0.14  51 0.0000000222 0.50 

20 0.0000001828 1.00  52 0.0000000086 0.25 

21 0.0000000024 0.14  53 0.0000001576 1.00 

22 0.0000000029 0.25  54 0.0000000327 0.50 

23 0.0000000096 0.33  55 0.0000000466 1.00 

24 0.0000000040 0.14  56 0.0000000124 0.33 

25 0.0000000044 0.17  57 0.0000006475 1.00 

26 0.0000000030 0.20  58 0.0000000314 1.00 

27 0.0000000025 0.11  59 0.0000000289 1.00 

28 0.0000000066 0.25  60 0.0000006802 1.00 

29 0.0000000043 0.25  61 0.0000000995 1.00 

30 0.0000000059 0.25  62 0.0000000099 0.50 

31 0.0000000021 0.08  63 0.0000000255 1.00 

32 0.0000000036 0.11  64 0.0000000736 1.00 

From the fitness value of each individual, the best fitness values are taken to be maintained and 

brought to the next generation. In this case for the largest claim the largest fitness value is the 60th 

individual is 0.0000006802 and for many claims of fitness value 1. Individuals with the best 

fitness value of the first generation population will be retained and taken to the next generation 

 

c.  Selection 
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 After a population assessment operation, the best chromosomes are selected by using wheel 

selection that is associated with each chromosome of selection probability, noted, Pi  with the 

following formula: 

1
1

1

i
i

i

i P o p

h
P

N h
∈

 
 

= − 
−  

 


 

 Each chromosome is reproduced with probability. Some chromosomes are "more" reproduced and 

"bad" ones are removed. Next randomly select individuals from the population to serve as parent. 

The parent will be in the process of crossing with another selected individual. 

With the help of matlab software got parent selected randomly. Here are the individual results 

selected as the parent. 

Table 2. Claim Large Selection 

Parent Individual  Parent Individual  Parent Individual  Parent Individual 

Parent 1 5  Parent 1 11  Parent 1 55  Parent 1 7 

Parent 2 24  Parent 2 27  Parent 2 63  Parent 2 12 

Parent 1 47  Parent 1 19  Parent 1 21  Parent 1 59 

Parent 2 56  Parent 2 41  Parent 2 34  Parent 2 28 

Parent 1 20  Parent 1 4  Parent 1 39  Parent 1 48 

Parent 2 33  Parent 2 42  Parent 2 25  Parent 2 64 

Parent 1 38  Parent 1 14  Parent 1 35  Parent 1 1 

Parent 2 52  Parent 2 6  Parent 2 32  Parent 2 8 

Parent 1 30  Parent 1 46  Parent 1 37  Parent 1 36 

Parent 2 44  Parent 2 31  Parent 2 53  Parent 2 43 

Parent 1 3  Parent 1 10  Parent 1 16  Parent 1 54 

Parent 2 29  Parent 2 17  Parent 2 49  Parent 2 57 

Parent 1 13  Parent 1 23  Parent 1 60  Parent 1 62 

Parent 2 18  Parent 2 58  Parent 2 15  Parent 2 45 

Parent 1 26  Parent 1 9  Parent 1 51  Parent 1 61 

Parent 2 50  Parent 2 40  Parent 2 2  Parent 2 22 

Table 3. Many Large Selection 

Parent 
Individua

l 

 
Parent Individual 

 
Parent 

Individua

l 

 
Parent 

Individua

l 

Parent 1 22  Parent 1 62  Parent 1 32  Parent 1 33 

Parent 2 37  Parent 2 52  Parent 2 40  Parent 2 48 

Parent 1 47  Parent 1 3  Parent 1 59  Parent 1 49 

Parent 2 60  Parent 2 14  Parent 2 9  Parent 2 18 

Parent 1 4  Parent 1 41  Parent 1 11  Parent 1 38 

Parent 2 20  Parent 2 19  Parent 2 30  Parent 2 36 

Parent 1 54  Parent 1 50  Parent 1 23  Parent 1 55 

Parent 2 31  Parent 2 51  Parent 2 10  Parent 2 43 

Parent 1 57  Parent 1 12  Parent 1 39  Parent 1 27 

Parent 2 16  Parent 2 25  Parent 2 45  Parent 2 29 

Parent 1 13  Parent 1 46  Parent 1 26  Parent 1 15 

Parent 2 34  Parent 2 61  Parent 2 44  Parent 2 35 

Parent 1 1  Parent 1 21  Parent 1 7  Parent 1 42 

Parent 2 17  Parent 2 56  Parent 2 28  Parent 2 6 

Parent 1 63  Parent 1 64  Parent 1 2  Parent 1 53 

Parent 2 8  Parent 2 5  Parent 2 24  Parent 2 58 

d. Crossover 

 After using the selection method for the selection of two individuals, we apply the crossover 

operator to a point on this pair. This operator divides each parent into two parts in the same 

position, chosen at random. Child 1 was made part of the first parent and the second part of the 

second parent when child 2 consisted of the second part of the first parent and the first part of the 

second parent 

e. Mutation 
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This operation provides the genetic algorithm of ergodicity property which indicates that it will 

most likely reach all parts of the space belonging to the state, without traveling all in the resolution 

process. It's usually to draw a random gene in a chromosome and replace it with a random value. 

f. Conditions for convergence 

At this level, the final generation is considered. If the result is favorable then the optimal 

chromosome is obtained. Otherwise, the evaluation and reproduction steps are repeated until a 

certain number of generations, until the convergence criteria are established or until the 

convergence criteria are met. 

3.  Main result and conclusions 

With the help of matlab software, Genetic Algorithm output process obtained results as follows: 

 

0Nɶ   = 64  D = 0.33984 (many claims) 

p  = 0.26667  D = 0.14049  (claim value) 

m1  = 2.3702E+008  α = 180.79 

m2  = 5.6321E+017  Β = 0.1012 

m3  = 2.5115E+028  σs = 1. 9182E+009 

m4  = 5.2923E+040  2
sσ  

= 7.3285E+018 

ζ = 0.9531  c = 0.01 

κs = 2.8623  Z0.01 = − 2.3263 

3.1. Results 

In this section the results of the data processing analysis will be explained comprising the estimation 

of the frequency distribution model of the claim, the estimated claim distribution model, and the 

collective risk estimation of the assurance claim. 

3.1.1 Estimation of claims frequency distribution model 

Referring to (1) and after following the identification stages of the distribution model, distribution 

model parameter estimation, and test of distribution model matching. The frequency of claims 

obtained, a random sequence of events that can be predicted through a discrete distribution model. 

The identification of frequency distribution model of the claim is made by curve matching, result 

of curve matching, the late indicates the model suitable for the frequency of the claim is following the 

geometric distribution. While estimation of frequency distribution model of claim model is performed 

by using Maximum Likelihood Estimator method. From result of processing obtained by parameter 

estimator p = 0.26667. The probability density function for geometric distribution is as follows: 

1( ,0.26667 (0.26667)(1 0.26667) ; 1,2,3,....n
n nη −= − =  

Estimator of the frequency distribution model of this claim, subsequently used to estimate the 

collective risk of insurance claims. 

3.1.2. Estimate the large distribution model of the claim 

From the estimator values, namely: α = 180.79 and β = 0.1012. Furthermore, the matching test will be 

done by comparing the result of output of D value with table D of 95% confidence level (D1-95%) its 

critical value is 0.37543. Since the value of D <D1-95% (0.14049 <0.37543), then Ho is accepted. 

This means that the claim data follows the gamma distribution. The gamma distribution is as follows: 

− −= >
Γ

180.79 1 ( /0.1012)

180.79

1
( ) ; 0

(180.79)(0.1012)

xf x x e x  

3.1.3. Estimated collective risk of insurance claims 
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The collective risk estimates of insurance claims include aggregate claims and collective risk 

measurement. Collective risk measurement is based on Collective Risk, Collective Value-at-Risk, and 

Collective Modified Value-at-Risk. Estimates of aggregate claims expectations and collective risk 

measurements are performed by estimating the frequency distribution model of claims as equations 

(10) and (11). Estimator values of the parameters E[N] and Var[N], as well as the values of m1, m2, m3 

and m4, are used in calculating aggregate claims estimation estimates and collective risk 

measurements. As the above table values the moments obtained from the Genetic Algorithm output, ie 

m1 = 2.3702e + 008, m2 = 5.6321e + 017, m3 = 2.5115e + 028, m4 = 5.2923e + 040, σs  = 1.9182e + 

009, = 7.3285 + 018, aggregate claim risk value as measured by Collective Value-at-Risk (CVaR) at 

significance level α = 0.01 (standard normal distribution Z0.01= 2.3263), is as follows: 

= − − + ++7.3285 01864{ 2.3263 ) 1. 918 0( )}2 09CVa ER x  = 280.280.000.000 

From filing claims data of 64 events, with a claim value of 10,260,884,880 IDR. Based on the 

result of value analysis σs = 1,918,200,000 IDR per month or in 1 (one) year of 23,018,400,000 IDR. 

Based on the estimated CVaR estimator of 280,280,000,000 IDR, this value is an assumption of the 

value of the claim that will occur. If the risk of aggregate claims is measured by Collective Modified 

Value-at-Risk (CMVaR) using Genetic Algorithms, the best result is 226,484,957,615 IDR, 

 

 

Figure 3. Result Genetic Algorithm 

 

 

While if calculated manually in get the results as follows: 

= − + − + − − + − − − −+ − +− −2 3 3 2 1/21 1 1
64{( ) (( 2.3263 ( 2.3263 1)( )) ( 2.3263 3( 2.3263)( )) (2( 2.3263 ) 5( 2.32631. 9182 009 0.9531 2.8623 )(0.9531) ) 7.3285( ) }

6 6
8

12 3
01CMVaR e

CMVaR =  331,500,000,000 IDR 

Which risk model will be chosen by the insurance company will be determined by considering 

other factors. 

3.2. Conclusion 

After analyzing the model study of credit life insurance risk adjustment, from the secondary data of 

one insurance company with the assistance of Matlab software, it can be concluded that the frequency 

of claims follows geometric distribution with p = 0.26667. For the large claims follow the gamma 

distribution with estimators α = 180.79 and β = 0.1012. From that result the aggregate claim model 

formed from the frequency distribution of claims and the magnitude of individual claims, is a 

geometric compound distribution. The geometric compound distribution is determined by moments m1 

= 2.3702E + 008, m2 = 5.6321E + 017, m3 = 2.5115E + 028, m4 = 5.2923E + 040. Value 
⌢

1 2 3, , , ,p m m m and, 4m  with a significance level of 5% obtained a value of CMVaR of 
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Rp.331.500.000.000. The CMVaR value is an alternative risk measure, especially the large insurance 

claims not following the normal distribution 
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