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Abstract. Eigenvalues and eigenvectors in max-plus algebra have the same important role as 

eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and 

eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, 

scheduling production systems and scheduling learning activities in moving classes. In the 

translation of proteins in which the ribosome move uni-directionally along the mRNA strand to 

recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to 

calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is 

important to examine the eigenvalues and eigenvectors in the process of protein translation. In 

this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation 

by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and 

easier to apply to the system than that introduced elsewhere. This paper also discusses the 

properties of the matrix 
n

Bλ
⊗

 of model. Among the important properties, it always has the 

same elements in the first column for 1, 2,...n =  if the eigenvalue is the time of initiation, 

inλ τ= , and the column is the eigenvector of the model corresponding to λ . 

1. Introduction 

Max-plus algebra is widely used to model time events discrete system. A typical application of 

discrete events system are production lines, where every machine must wait with a starting a new 

operation until the operations on other machines are completed as in the scheduling, transporting, 

manufacturing, queuing, and protein production in cell. One problem that often appears in the max-

plus algebra is the eigen problem. The eigen problem for max-plus matrices describes the steady state 

of the system. A more details examples of the eigen problems can be seen in [4], [5], [7], [9], [10], 

[11]. 

The eigenvalues and eigenvectors in a max-plus model can be used to get an overview of the 

system dynamics such as in train system scheduling, scheduling production systems, and scheduling 

lesson activities on moving classes. In the translation stage of cellular protein production, in which the 

ribosomes moves uni-directionally along an mRNA strand to building amino acid chains, the 

eigenvalues and eigenvectors are useful to calculate the protein production rate and density of 

ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors of 

the model. 
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In the previous work, the authors in [3] provided a formula for determining the eigenvalues and 

eigenvectors of their  model [3]. In this paper we will discuss a simpler formula that is easier to 

understand the process of determining  the eigenvectors of their model. This formula is obtained by a 

different approach compared to the work in [3]. 

2. Model and Method 
The details derivation of the model are given in [3]. In this section we only present a brief theoretical 

background required in the subsequent sections, such as mRNA translation, max-plus algebra, eigen 

problem in max-plus algebra and matrices of the ribosome dynamics during mRNA translation. 

2.1. Messenger RNA translation 

mRNA translation is one of the steps in protein production in cells [1]. The mRNAs are single strands 

of nucleotides, grouped in triplets called codons, holds the code for a specific chain of amino acids 

that makes up a protein. The translation is performed by molecular machines called ribosomes, which 

scan along the mRNA adding amino acids to a growing chain which will become the protein.  In this 

paper we will examine the eigenvalues and eigenvectors of the matrix B in (1) which is a max-plus 

model of ribosome dynamics during mRNA translation introduced by [3]. See [3] for the details. 
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2.2. Max-plus algebra 

Bacelli et al. in [2] defines the max-plus algebra and denoted by ℛ��� which is defined as the set 

ℝ��� = ℝ ∪ −∞ , with ℝ is real numbers extended by an infinite element 
 = −∞ and operation ⊕ , 

⊗  are defined by 

{ }max ,a b a b⊕ =  and a b a b⊗ = +                       (2) 

where �, 
 ∈ ℝ���. It is easy to show that both operation ⊕  and ⊗  are associative and commutative. 

The zero and unit element in max-plus algebra are 
 = −∞ and � = 0, respectively.  

We define max-plus power in the natural way 

�⊗� = � ⊗ � ⊗ � ⊗ � ⊗ … ⊗ � , k times                          (3)  

We can write �⊗� in conventional algebra as  � × �. We also note that the ⊗  operator has an inverse 

which can be expressed as a negative power 

� ⊗ 
 ⊗ ���� = � − 
,                      (4) 

but there is no inverse of the ⊕  operator. 

 Vectors and matrices can also be constructed. We denoted by ��� the  i-jth component of the matrix 

 . For matrices  ∈ ℝ���!×�, " ∈ ℝ���!×�, # ∈ ℝ����×$  the sum and product of matrices are then defined as 

% ⊕ "&�� = ��� ⊕ 
��,                             (5) 

% ⊗ #&�� =
1

m

k =
⊕ ��� ⊗ '��,                             (6) 

where [ ]ij ij
a A= , [ ]ij ij

b B=  and [ ]ij ij
c C= , and have used the following convenient notation for 

summation over indices: 

{ }
1

max 1
n

i i
i

a a i n
=
⊕ = ≤ ≤ . 
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 For square matrix  ∈ ℝ���!×! , similar to scalar in max-plus algebra, we denote 
1...k k

k

A A A A A A
⊗ −= ⊗ ⊗ ⊗ = ⊗�������  as kth power of A , while 

2 3
1...

k
kA A A A A

+ ∞
== ⊕ ⊕ ⊕ = ⊕  and 

*
nA E A

+= ⊕  with nE  is the identity matrix in ℝ���!×! . Furthermore, those relation can be written in the 

form of 
*

0
k

kA A
∞ ⊗

== ⊕  which is called Kleene star. Therefore,  

*A A A+ = ⊗               (7) 

 Eigen problems are common problem in mathematics especially in linear algebra. In max-plus 

algebra, similar to linear algebra, eigen problems are formulated as A λ⊗ = ⊗u u  for given matrix  ∈
ℝ���!×! , where λ  is called eigenvalue and uuuu ∈ ℝ���!  is called eigenvector. This problem is treated by 

several authors who can be such as in [4], [5], [10], [11]. The graph associated with matrix  ∈ ℝ���!×! , 
is denoted by ( )G A . It consists of a set of nodes and directed weighted arcs, where if there is a matrix 

element [ ]
ij

A  with value ija ε≠ , then there is an arc j i→  �from j to i� with weight ija . A series of 

one or more arcs between two nodes i and j is called a path i j→ . A path i i→  is called a circuit and 

denoted γ . A graph is said to be strongly connected if for any two different nodes there is a path 

between them and a matrix A  is said to be irreducible if the corresponding graph ( )G A  is strongly 

connected. The circuit weight wγ  of a circuit γ  is defined as the sum of the weight of all arcs in that 

circuit and the circuit length lγ  as the number of arcs in the circuit. The mean circuit weight is then 

defined as 
w

w
l

γ
γ

γ

= . If the maximum mean circuit weight in a graph is λ , then a circuit with a mean 

circuit weight equal to λ  is called a critical circuit. The critical graph corresponding to matrix A  is 

denoted by ( )cG A . It is defined as the subgraph of ( )G A  containing only the nodes and arcs which 

are in the critical circuits and the set of nodes in ( )G A  denoted by ( )cU A . Furthermore, in this paper 

we define 0 λ 1
��

∈ ℝ���!×!  as  

( ) ( )
ijij

A Aλ λ= − ⊗             (8) 

for any λ . For the analysis of the subsequent section we need the following theorems: 

 

Theorem 1. [6] Let  ∈ ℝ���!×!  be a matrix that has a maximal mean circuit weight of circuits in  

( )G A  equal to e  then A
+  exists and is defined by 

2
1...

n n k
kA A A A A

+ ⊗
== ⊕ ⊕ ⊕ = ⊕ . 

Based on Theorem 1 it is given that ( )2 2 1... ...n n
nA A A A A E A A A+ −= ⊕ ⊕ ⊕ = ⊗ ⊕ ⊕ ⊕ ⊕ , and  

according to (7) it is obtained that 
* 2 1

...
n

nA E A A A
−= ⊕ ⊕ ⊕ ⊕ .            (9) 

 

Theorem 2. Let  ∈ ℝ���!×!  has finite number of the maximal mean circuit weight λ  , then λ  is the 

eigenvalue of A  and for any  cU∈u , the column of ( )*Aλ
u

 is the eigenvector of A   corresponding to 

the λ . 

Theorem 3. [8] Any irreducible matrix  ∈ ℝ���!×!  posseses one and only one eigenvalue λ , which is 

a finite number equal to the maximal mean circuit weight of circuits in the graph ( )G A .  

 

Theorem 4. Let  " ∈ ℝ���
�!2��×�!2��

  is given by  (1), then { }max , , 1in out i i nλ τ τ τ= ≤ ≤ . 
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We do not prove the theorems. Interested readers can consult the respective references. 

3. Result and Discussion 

In this section, we will examine how to determine the eigenvector of the matrix B  in (1). The 

eigenvalue of the matrix B  can be found from the correspomding graph ( )G B . Fig. 1 show the 

example of graph ( )G B  with 3n = . 

 

Figure 1. Diagram showing the weighted, directed graph ( )G B  corresponding to the 

matrix B (Eq. (1)) with 3n = . 

 

The matrix B  is irreducible and has exactly one eigenvalue because the graph ( )G B  is strongly 

connected. Since the eigenvalue of B  is the maximum mean circuit weight, then the eigenvalue of B 

denotes the largest waiting time of the model. In [3] the solution of determining the eigenvector 

depends on the corresponding eigenvalues of Theorem 4 as follows: 

  

a. If inλ τ=  then the final expression for the eigenvector is  

( ) ( )

( ) ( )

( )

1 1

1

1 1

2

1

n n

n n

n n

n

u

u

u

u

τ τ

τ τ

τ

⊗ − ⊗ −

⊗ − ⊗ −

⊗ −

 ⊗ ⊗ ⊗
 
 ⊗ ⊗ ⊗
 

=  
 

⊗ 
 
 

u

⋯

⋯

⋮  .    (10) 

b. If outλ τ=  then the final expression for the eigenvector is  

0

0

2
0

0

out

out

n
out

u

u

u

u

τ

τ

τ

⊗

⊗

 
 

⊗ 
 = ⊗
 
 
 

⊗  

u

⋮

.     (11) 

c. If { }max 1i i nλ τ= ≤ ≤  then the final expression for the eigenvector is  



5

1234567890‘’“”

IORA-ICOR 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 332 (2018) 012019 doi:10.1088/1757-899X/332/1/012019

 

 

 

 

 

 

0

0

2
0

0

1 0

1 2 0

1 0

q

q
q

q
q q

q
q n

u

u

u

u

u

u

u

τ

τ

τ

τ τ

τ τ τ

τ τ τ

⊗

⊗

⊗
+

⊗
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⊗
+

 
 

⊗ 
 ⊗
 
 
 

⊗ =
 
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 
 
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u

⋮

⋮

⋯

  ,    (12) 

and     

0

0

2
0

0

1 0

1 2 0

1 0

p

p
p

p
p p

p
p n

u

u

u

u

u

u

u

τ

τ

τ

τ τ

τ τ τ

τ τ τ

⊗

⊗

⊗
+

⊗
+ +

⊗
+

 
 

⊗ 
 ⊗
 
 
 

⊗ =
 

⊗ ⊗ 
 

⊗ ⊗ ⊗ 
 
 
 ⊗ ⊗ ⊗ ⊗ 

u

⋮

⋮

⋯

.        (13) 

  

 The next discussion is purported to calculate the eigenvectors which different to the method in [3]. 

It is done by using the Kleene star algorithm. We identify the eigenvectors into three cases: inλ τ= , 

outλ τ= , { }max 1i i nλ τ= ≤ ≤ .The steps of determining the eigenvector formula of the matrix B  in (1) 

by the Kleene star method is undertaken with the following steps: 

i. Determine the eigenvalues of B  by the formula { }max , , 1in out i i nλ τ τ τ= ≤ ≤  

ii. Calculate B Bλ λ= − ⊗  

iii. Calculate * 2 3
...

n
nB E B B B B

λ λ λλ λ
⊗ ⊗ ⊗= ⊕ ⊕ ⊕ ⊕ ⊕  

iv. Choose the eigenvector of matrix B  of the column vectors in  
*

Bλ  corresponding to the 

location of the eigenvalues in matrix B . 

Several other authors have reviewed this method such as [8]. By using this method we find the 

following theorem regarding the properties of the matrix 
n

B
λ

⊗
 of  (1) as follows: 

 

Theorem 5. Let ( ) ( )1 1
max

n n
B

+ × +  satisfy (1) with inλ τ= , then 

i. n
B

λ

⊗  is the matrix with the first column always the same for every n , where 1, 2,3,...n =  

ii. 1nb  is the first column of  n
B

λ

⊗  and it is the eigenvector of B . 

 

Proof: 

i. For 1, 2,3,...n = we obtain 
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and so on. It can be seen that all the first columns of the matrix n
B

λ

⊗

 
have elements that are always the 

same for 3 = 1,2,3, … 

 

ii. * 2
nB E B B

λλ λ
⊗= ⊕ ⊕ ⊕⋯  
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0
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Since inλ τ=   in column 1 of matrix B  corresponds to Theorem 2, the eigenvector is the first column 

of the matrix 
*

Bλ  as follows 

1

1 1 2

1 2
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n

n

b
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τ τ

τ τ τ

 
 
 
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 
 
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⋮

⋯

        

In the next section will examine the eigenvectors of the matrix (1) by the Kleene star algorithm . 
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3.1. Case (i): inλ τ=  

In this case we show that the waiting time for initiation of translations is longer that for tRNA capture 

and termination, i.e. ,in out iτ τ τ>  for 1 i n≤ ≤ . 

a. inλ τ=  

b. By using Theorem 5 the resulting eigenvector of matrix (1) is 

  

1

1 2

1 2 3

1 2 3

0

... n

τ

τ τ

τ τ τ

τ τ τ τ

 
 
 
 ⊗

=  
⊗ ⊗ 

 
 

⊗ ⊗ ⊗ ⊗  

u

⋮

     (14) 

3.2. Case (ii): outλ τ=  

In this case we show that the waiting for termination of translation is longer that for tRNA capture and 

initiation, i.e. ,out in iτ τ τ>  for 1 i n≤ ≤ . 

a. outλ τ=  

b. 1 1

1 2 1 2 2

1 2 3 1 2 3 2 3 0

out in out

out in out out

out in out out out

out in out out
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τ τ τ τ τ τ ε
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τ τ τ τ τ τ τ τ τ τ τ τ
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− ⊗ ⊗ − ⊗ − =
 − ⊗ ⊗ ⊗ − ⊗ ⊗ − ⊗ −
 
− ⊗ ⊗ ⊗ ⊗ − ⊗ ⊗ ⊗ − ⊗ ⊗ 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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2 1 1 2 1 1 2 1 2

1 2 1 2 3 1 2 1 2 3 2 1 2 3

1 2 3

2 2 2

2 2 2 2

2 2 2

out in in out in out

out in in out in out out

out in in out in out out

out in out

Bλ

τ τ τ τ τ τ τ τ ε

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ

⊗

− ⊗ ⊗ ⊕ − ⊗ ⊕ −

− ⊗ ⊗ ⊗ ⊕ ⊕ − ⊗ ⊗ ⊕ ⊕ − ⊗ ⊕ −
=

− ⊗ ⊗ ⊗ ⊕ ⊕ ⊕ − ⊗ ⊗ ⊕ ⊕ ⊕ − ⊗ ⊗ ⊕ ⊕ −

− ⊗ ⊗ ⊗ ⊗ − 1 2 3 2 3 0outτ τ τ τ τ τ

 
 
 
 
 

⊗ ⊗ ⊗ − ⊗ ⊗  

 

 

 

c. * 2 3
nB E B B B

λ λλ λ
⊗ ⊗= ⊕ ⊕ ⊕  

Since outλ τ=   in column 4 of matrix B  corresponds to theorem 2, the eigenvector is the fourth 

column of the matrix 
*

Bλ . The resulting eigenvector is  

( )

( )( )

( )( )

3

3 1

3 2

3

2

0
0

out
out

out out

out
out

ττ

τ τ

τ
τ

⊗ −

⊗ − −

⊗ − −

 
−   
   −   = =
 −  
   
    

u . 

By continuing this step for the matrix ( ) ( )1 1
max

n n
B

+ × +

 
we obtain a general formula for eigenvector 

associated with outλ τ=  as follows
 

3

3

2

0

out

out

out

Bλ

τ

τ

τ
⊗

− 
 

− =
 −
 
 

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯
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( )

( )( )

( )( )

( )( )

1

2

3

0

n
out

n

out

n

out

n

out

τ

τ

τ

τ

⊗ −

⊗ − −

⊗ − −

⊗ − −

 
 
 
 
 

=  
 
 
 
 
  

u

⋮

.     (15) 

3.3. Case (iii): { }max 1
i

i nλ τ= ≤ ≤  

In this case we assume that there are two places in the bulk of the mRNA, with waiting times equals to

τ . That is, there exist integers p and q such that ,p qτ τ τ= , where 1 p q n< < < . 

a. { }max 1i i nλ τ= ≤ ≤  

b. For simplicity we use 4n =  so 

 

( )

1 1

1 1

1 1

1 4 1 4 4 4 4

0

0

in

in

in

in

in out

Bλ

τ τ τ ε ε ε

τ τ τ τ τ τ ε ε

τ τ τ τ ε

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ τ

− ⊗ − 
 

− ⊗ ⊗ − ⊗ − 
 ⊗ −=
 

⊗ ⊗ ⊗ − 
 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ − ⊗ ⊕ 

 

 

( ) ( )1 1

1 1
2

1 1

1 1

1 4 1 4 4 4 4

2 2 2

2

0 2

0

in in in

in

in

in

in

Bλ

τ τ τ τ τ τ τ τ ε ε

τ τ τ τ τ τ τ ε

τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ

⊗

 − ⊗ ⊗ ⊕ − ⊗ ⊕ −
 

− ⊗ ⊗ − ⊗ − − 
 = ⊗ − −
 

⊗ ⊗ ⊗ − 
 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ − ⊗ 

 

1 1

1 1

3
1 1

1 1

1 4 1 4 4 4 4

2 2 2 3

2 3

0 2

0

in

in

in

in

in

Bλ

τ τ τ τ τ τ τ ε

τ τ τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ

⊗

− ⊗ ⊗ − ⊗ − − 
 

− ⊗ ⊗ − ⊗ − − − 
 = ⊗ − −
 

⊗ ⊗ ⊗ − 
 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ − ⊗ 

1 1

1 1

4
1 1

1 1

1 4 1 4 4 4 4

2 2 2 3 4

2 3

0 2

0

in

in

in

in

in

Bλ

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ

⊗

− ⊗ ⊗ − ⊗ − − − 
 

− ⊗ ⊗ − ⊗ − − − 
 = ⊗ − −
 

⊗ ⊗ ⊗ − 
 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ − ⊗ 

. 

 

c. * 2 3 4
nB E B B B B

λ λ λλ λ
⊗ ⊗ ⊗= ⊕ ⊕ ⊕ ⊕   

Now, focus on the third and fourth columns of the matrix 
*

Bλ  corresponds to Theorem 2 about the 

existence of its eigenvalues in matrix B . The resulting eigenvector is  
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

020

121

22

22
12 1

4 22
2 2 2 1 2 1

2

0
p

p

p

pp

pp
p

pp
p p

τ

τ ττ τ
τ

τ ττ ττ

τ ττ τ

τ τ τ ττ τ τ
τ τ

τ τ τ τ τ τ τ τ

⊗ −⊗⊗ −⊗

⊗ −⊗⊗ −⊗

⊗ −⊗⊗ −⊗

⊗ −⊗⊗ −⊗
++

⊗ − ⊗ −⊗ ⊗
+ + + +

   ⊗⊗  −   
     ⊗⊗−     
    = = = ⊗⊗
    
     ⊗ ⊗⊗ ⊗
    ⊗    ⊗ ⊗ ⊗ ⊗ ⊗ ⊗   

u     

and 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

3 00

3 11

3 22

33

4 33
13 1

3

2

0
q

q

q

q

qq

qq
q

τ

τ ττ τ
τ

τ ττ ττ

τ τ ττ τ

τ ττ τ
τ

τ τ ττ τ τ

⊗ −⊗ − ⊗⊗

⊗ −⊗ − ⊗⊗

⊗ −⊗ − ⊗⊗

⊗ −⊗ − ⊗⊗

⊗ −⊗ − ⊗⊗
++

   ⊗⊗
−     

     ⊗⊗−     
    = = =− ⊗⊗
    
     ⊗⊗
         ⊗ ⊗⊗ ⊗   

u . 

 

By continuing this step for the matrix ( ) ( )1 1
max

n n
B

+ × +

 
we obtain a general formula for eigenvector 

associated with { }max 1i i nλ τ= ≤ ≤  as follows 

       

( )

( )

( )

( )

( )

0

1

1

1

          

                      

...

p

p

p

pp

pp
p

pp
p n

τ

τ τ

τ τ

τ τ

τ τ τ

τ τ τ τ

⊗ −⊗

⊗ −⊗

⊗ −⊗

⊗ −⊗
+

⊗ −⊗
+

 ⊗
 
 ⊗
 
 
 

= ⊗ 
 

⊗ ⊗ 
 
 
 

⊗ ⊗ ⊗ ⊗ 

u

⋮

⋮

 ,    (16) 

and    

( )

( )

( )

( )

( )

0

1

1

1

        

                     

q

q

q

qq

qq
q

qq
q n

τ

τ τ

τ τ

τ τ

τ τ τ

τ τ τ τ

⊗ −⊗

⊗ −⊗

⊗ −⊗

⊗ −⊗
+

⊗ −⊗
+

 ⊗
 
 ⊗
 
 
 

= ⊗ 
 

⊗ ⊗ 
 
 
 

⊗ ⊗ ⊗ ⊗ 

u

⋮

⋮

⋯

.       (17) 

 

4. Conclusion 

This paper shows the formula for determining the eigenvectors of the system introduced in [3] using 

the Kleene star algorithm, where the eigenvector formula produced in this study is simpler and easier 

to use in finding eigenvectors of the matrix B . In this paper we also show the properties of the matrix 
n

Bλ
⊗

 that if the eigenvalues of the matrix  B  is inλ τ=  then the first column of the matrix 
n

Bλ
⊗

 is 

always the same for every 1,2,...n = and they becomes the eigenvector of the matrix B . 
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