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Abstract. This article introduces methodology to solve large scale two-phase linear 

programming with a case of multiple time period animal diet problems under both nutrients in 

raw materials and finished product demand uncertainties. Assumption of allowing to 

manufacture multiple product formulas in the same time period and assumption of allowing to 

hold raw materials and finished products inventory have been added. Dantzig-Wolfe 

decompositions, Benders decomposition and Column generations technique has been combined 

and applied to solve the problem. The proposed procedure was programmed using VBA and 

Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and 

effectiveness trade-offs. 

1. Introduction 
In the animal feed commerce or industry has a majority costs in feed mix. Feed producers need to 
consider finding the optimal feed mix with the minimum cost fulfilling nutrients requirements. The 
classical diet model was first studied by (Stigler. 1945). Since then, the feed mix production planning 
has also been an important decision for avoiding stock out or over stock manufactured that effect its 
related cost. 
 

This paper propose methodology for solving stochastic linear programming in form of two-stage linear 

programming (Wagner. 1975) combining two type of problem, diet problem under uncertainty of 

nutrient in feed mix by (Thammanivit and Charnsethikul. 2013) and inventory problem under 

uncertainty of mixed products demand in finite multiple time period by (Pisit et al. 2008). The 

assumption of allowing to produce many product formulas in same time period is added. Dantzig-Wolfe 

decomposition, column generation and Benders decomposition algorithms have been used to solve this 

proposed model. Dantzig-Wolfe decomposition (Dantzig and Wolfe. 1960) has been used to solve large 

scale block angular problem of production planning part in the model. Column generation by 

Charnsethikul (2011) was proposed on case of relaxing the infinite number decision variables problem 

controlled from product tolerances allowed to manufacture possibility.  Benders decomposition 

(Infanger. 1994) can also be applied to the case of large scale diet problem. 
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2. Mathematical model 
The objective of model in this article (Atit and Peerayuth 2017) is to seek for the production plan of 

manufacturing and to store feed mix products in each period against uncertain demands. The production 

planning part dealt with raw materials purchasing cost, raw materials holding cost, finished products 

holding cost and finished product back ordering cost with inventory balance constraint as equations (1)-

(4) are considered. Set up cost between successive periods are not considered in this model. The 

corresponding diet model part is related with corrective action cost of rework for out of specification 

nutrients manufactured with the constraint of nutrition mixed from uncertain nutrients of raw materials 

and the constraint of raw materials proportion boundary. The hypothesis of allowing to produce many 

product formulas in the same time period is assumed and presented in equations (5)-(12). 
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where 

 

T : Number of time period considered, 

K  : Number of possible demand scenario considered, 

jt
x : Decision variable of producing product formula j quantity at time period t , 

ijt
a : Raw material i percentage in product formula j  at time period t , 

,i tR
I : Decision variable quantity of holding raw material i  at time period t , 

,i tQ : Decision variable quantity of ordering raw material i  at time period t , 

,i tR
g : Raw material i holding cost per unit at time period t , 

,i tR
h : Raw material i ordering cost per unit at time period t , 

,k tD
I

+
: Decision variable quantity of holding finished product at scenario k  time period t , 

,k tD
I

−
: Decision variable quantity of back ordering finished product at scenario k  time period t , 

tD
g : Finished product holding cost per unit at time period t , 

tD
h : Finished product back ordering cost per unit at time period t , 

,k t
dɺ : Finished product demand at scenario k  time period t  and 

jt
c : Corrective action cost of manufacturing product formula j  at time period t coming from reworking 

in the case of under and over nutrients requirement as equations (6)-(7). 
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where 
N : A number of possible scenarios considered, 

( )

1

jt

ls
u : Slack of the amount of minimum nutrient in nutrient l scenario s product formula j at time period
t , 

( )

1

jt

ls
v : Surplus of the amount of minimum nutrient in nutrient l scenario s product formula j at time period
t , 

( )

2

jt

ls
u : Slack of the amount of maximum nutrient in nutrient l scenario s product formula j at time period
t , 

( )

2

jt

ls
v : Surplus of the amount of maximum nutrient in nutrient l scenario s product formula j at time 
period t , 

1ls
g : Expected cost per unit of 

( )

1
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ls
u , 

1ls
hɺ : Expected cost per unit of 
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1

jt

ls
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2ls
g : Expected cost per unit of 

( )

2

jt

ls
u , 

2ls
h : Expected cost per unit of 

( )

2

jt

ls
v , 

*

ils
a : Amount per unit of nutrient l in raw material i  scenario s , 

*

1lbɶ : Minimum acceptable quantity of nutrient l , 
*

2lbɶ : Maximum acceptable quantity of nutrient l , 
*

i
l : Smallest allowable fraction of raw material i and 

*

i
u : Largest allowable fraction of raw material i . 

3. Methodology 
Three major algorithms were used to solve the model described in previous section. Dantzig-Wolfe 

decomposition is applied for solving large scale two-stage linear programming for inventory problem 

(equations (1)-(4)). The column generation technique is used for the problem of infinite number of 

manufacturing quantity decision variables controlled from possibility in continuous fraction formula 

equations (6)-(12) while Benders decomposition can be utilized for solving large scale diet problem 

equations (7)-(12). 

3.1. Dantzig-Wolfe Decomposition  

Consider equations (1)-(4). This can be solved by using algorithm for two-stage linear programming 

such as Benders decomposition or Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition has 

been chosen in this step because it is easier to find directly both primal and dual solutions together. 

Equations (1)-(4) need to be transformed to the corresponding dual problem as equations (13)-(19). 
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Equations (13)-(19) are combined from two independent constraints set, Equations (14)-(17) and 
Equations (18)-(19), and linking with coupling constraint equations (14) and J is a finite number of feed 
mix formula initially used and sampled from infinite number of alternatives. This pattern can be 
transformed to convex combination model with initial solutions set 1,...,θ η= as equations (20)-(23). 
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where 
η : Number of solutions set considered, 

,i tR
y

θ�
: Optimal solutions of 

,k tD
yɺ equations (15)-(17) solutions set θ  and 

,k tD
y

θ�
: Optimal solutions of 

,k tD
yɺ equations (18)-(19) solutions set θ . 

 
According to equations (20)-(23), Initial solutions set are needed then searching for new potential 
solutions set 1η +  iteratively. Searching algorithm is still using equations (13)-(19) concept by relaxing 
the coupling constraint equation (14) as Lagrange multiplier terms in the objective function as equation 
(23). 
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Equation (23) can be reformed as equation (24). 
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where

jt
λ′ is a dual decision variable of equation (14) formula j at time period t .  

 
Solving equations (20)-(23) can only find the optimal solutions

jt
λ′ for the solutions set 1,...,θ η= . 

Adding the optimal solutions of equations (24)-(29) into solutions set 1η +  equations (20)-(22) can 
improve the objective function value. Repeating these steps until the objective function value equations 
(20) converges will make the solutions close to optimal. 
 
Equations (24)-(29) can be separated into two independent problems, constraints (25)-(27) and (28)-
(29), equation with constraints (25)-(27) can be solved by using the direct simplex method but equation 
constraints (28)-(29) may not be proper because of the larger size involved. This pattern can written as 
equations (30)-(33) and solved by using Special purpose method (Apisak et al. 2016) introducing the 
new variable

kt
u′ as follows. 
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According to the new structure as described by equations (30)-(33), All of decision variables

,k TD
yɺ ,

,k t
u′

are independent. Thus, the decisions are depended upon on the objective function coefficients. If the 
coefficients are positive the variables are equal to ,

tD
g t∀ . In contrast, if the coefficients are negative 

the variables are equal to ,
tD

h t− ∀ . 
 

Finally, an optimal solution of equations (13)-(19) are equal to the product of the solutions set and their 
optimal weight as shown by equations (34)-(35). 
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In conclusion, the optimal solution for both primal problem equations (1)-(4) and dual solutions 

jt
λ′

from equations (21) can be simultaneously found using the above procedure. 
 

After the optimal solutions
jt

x from equations (1)-(4) are obtained.
 ,i tR
I , ,i tQ ,

,k tD
I

+
and

,k tD
I

−
can be 

calculated in their relative equations. This method can be used with only finite decision variables 
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problem ( 1,...,j n= ). Therefore, the column generation approach is needed to expand the subproblem 

size to approximate closely to the master problem. 

 

3.2. Column generation  

In other issues, equations (1)-(4) still have the problem of infinite number of decision variables of 
manufactured quantity consequence from continuous coefficient equations (7)-(12). This can be solved 
by using the column generations technique (Charnsethikul. 2011); create the restricted master problem 
and solve for minimum reduced cost of non-considering decision variables then add an improved one to 
the restricted master problem iteratively until all reduced cost of non-considering decision variables are 
nonnegative, To solve the minimum reduced cost search equations for expanding the size of restricted 
master problem. Benders decomposition is also needed as a sub-procedure when the number of scenarios 
becomes too large (Artit and Peerayuth, 2016).  

 
Reduced cost of any 

jt
x from equations (1)-(4) can be written as the right hand side of equation (36). 

By maximizing the objective function, if there exist no positive Rɺ , the current best solution is already 
the optimal solution. Otherwise, the solution of equations (36) with most positive Rɺ  will lead solution 
of equations (1)-(4) to a better optimal solution (Charnsethikul, 2011). 
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Objective function equation (36) can be written as equation (37) to standardize two-stage linear 
programming form (Wagner. 1975) as follows. 
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Solving equation (37) is still constrained by raw material fraction usage condition equation (8)-(12). 

Adding this solution to restricted master problem of equations (1)-(4) and resolve equations (37) until 

no negative objective value detected will lead to the solution optimality. 

3.3. Benders decomposition 

In order to solve equation (37) constrained by equations (8)-(12), the direct Simplex method may 
not be the proper choice because the problem can be too large. This depends on number of nutrient 
scenarios considered. Benders decomposition can be applied to this case. Given the first stage decision 
variables be any feasible constant solution

*( ) **( )jt jt

i i
x x= . Reduced cost search equations are formed into 

equations (38)-(41) as follows. 
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The dual problem of equations (38)-(41) can be formulated as following equations (42)-(44). 
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where 
wɺ : Dual objective value of equations (38)-(41), 

*( )

1

jt

lsqy : Dual decision variable of nutrient lower bound constraint for nutrient l scenario s computing in 
round q  of formula j at time period t from equation (39). 

*( )

2

jt

lsqy : Dual decision variable of nutrient upper bound constraint for nutrient l scenario s computing in 
round q  formula j at time period t from equation (40). 
 

The optimal solutions of equations (42)-(44) are trivial. Independent constraint causes the solutions 
depending upon the corresponding objective function coefficients. If the coefficient is positive the 
solution is equal to the related upper bound. Otherwise, the solution is equal to the related lower bound. 

 
After solving equations (42)-(44), the next step is to solve the cuts equations for deciding the new 

first stage decision variables
*( ) **( )jt jt

i i
x x= which can be shown in the following equations (45)-(46). 

 
Minimize Tɺ                      (45) 

Subject to 

                         
,
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where 
Tɺ : The smallest upper bound of the reduced cost search problem. 

 
Replacing new

*( )jt

i
x by

**( )jt

i
x in the equation (38)-(41) then resolve with the same algorithm until 

T R→  will lead to the converged optimal solutions of equations (37) subjecting to constraint equations 
(8)-(12). In summary, figure 1 is illustrated the proposed method flowchart. 

4. Computational test 
To test the method capability, Visual basic for application in Microsoft Excel has been developed. 

Working parallel with automatic computing in spread sheets cells and Solver tool. In this study, the 
computer processor is Intel(R) Core(TM) i5-3450S CPU @ 2.80GHz. The experimental case consists 

of 8 types of raw materials. Nutrients percentage in raw materials, Nutrients requirement, raw materials 
fraction boundary, corrective action cost and corrective action cost per unit data are based on the pig 

diet problem by (Wanida et al. 2008) shown in appendix (Table: 1-Table: 4). 
 
As (Wanida et al. 2008), assume the cost of raw materials equal to 42, 31, 34, 65, 22, 87, 120 and 15 
baht per unit respectively. The assumption of no corrective action cost in the case of producing nutrient 
at its lower bound and under the upper bound has been used. Testing with 6 time periods, inventory 
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holding cost are 5, 15, 20, 5, 5, 10, 15, 5 baht per unit per time period respectively, Inventory level at 
initial time period are 200, 300, 150, 150, 500, 150, 700, 650 units respectively. Finished products 
holding cost in each time period are 10, 15, 10, 12, 10, 20 baht per unit. Back ordering cost in each time 
period are 30, 24, 20, 16, 25, 22 baht per unit. Finished product demand in each time periods are 
1,000±20, 1,200±20, 1,600±20, 1,800±10, 900±10, 1,300±40 units. Uncertainties of nutrients in raw 
material and demand are both simulated as discrete uniform distribution with 10,000 scenarios 
simulation size. 

 

 

Figure 1. Proposed method flow chart. 

5. Result and discussion 
The solution obtained is to produce only the first 3 out of 6 periods shown that holding cost impact is 
less than back ordering cost. The optimal overall expected value is 524,373 baht with 2 iterations of 
column generations being used while 15, 14 and 11 iterations of Dantzig-Wolfe decomposition has been 
used in each iteration of the column generation method. Figure 2 shows the objective value updating 
result. 
 

 

Figure 2. Objective value updating thru iterations. 
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The total runtime is 3525.39 second including from 3 iterations of column generation working with 
Benders decomposition and 3 iterations of Dantzig-Wolfe decomposition. Runtime per iteration and 
cumulative runtime are shown in figures 3 and 4 indicating that Dantzig-Wolfe decomposition consume 
more computing time because of the lack of any special propose technique to replace using simplex 
method in equations (24)-(27). 
 

 

Figure 3. Runtime per iteration. 

 

 

Figure 4. Cumulative runtime. 

6. Conclusion 
Two stage linear programming can be applied with the simultaneous inventory and diet planning 
problem. Dantzig-Wolfe decomposition and Benders decomposition are compatible in this case. The 
column generation technique is helpful for relaxing infinite number of related decision variables. These 
three algorithms can also be working as a hybrid approach. The preliminary on both computing time 
consumed and the solution quality when solving the case problem are reasonable and can be further 
improved. 
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Appendix 
Table 1. Nutrient percentage in raw materials.  

Materials Corn Fat(%) Calcium(%) Phosphorus(%) Energy (kcal) 

Corn 40±1 22±1 11±1 7±2 1,800±50 

Millet 5±0.25 4±1 8±1 5±0.5 2,200±100 

Cassava 1±0.01 5±2 12±2 14±1 2,000±25 

Fishmeal 60±2 10±1 15±2 10±1 1,750±50 

Rice bran - 13±2 6±1 5±1 1,800±50 

Concentrated feed - - 17±2 15±3 500±20 

Vitamin - - 25±1 24±2 200±10 

Salt 7±1 5±1 30±2 21±1 1,200±100 

 

Table 2. Nutrients requirement. 

Nutrients Requirement 

Protein (%) 16-22 

Fat (%) ≤ 14 

Calcium (%) ≥ 7 

Phosphorus (%) ≥ 5 

Energy (kcal) 1700-2200 
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Table 3. Raw material fraction boundary. 

Materials Boundary (%) 

Corn 15-25 

Millet 20-30 

Cassava 5-15 

Fishmeal 10-15 

Rice bran 15-20 

Concentrated feed 2-3 

Vitamin 1-2 

Salt 4-8 

Table 4. Corrective action cost. 

Nutrients Corrective action cost (Baht/unit) 

Protein (%) 3 

Fat (%) 5 

Calcum (%) 4 

Phosphorus (%) 6 

Energy (kcal) 0.25 

 


