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Abstract. A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is 

investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll 

chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov 

exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll 

dissipative chaotic system has three unstable equilibrium points. As an engineering application, 

global chaos control of the new two-scroll chaotic system with unknown system parameters is 

designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an 

electronic circuit realization of the new chaotic attractor is presented in detail to confirm the 

feasibility of the theoretical chaotic two-scroll attractor model. 

1.  Introduction 

In the last few decades, chaotic and hyperchaotic systems have been applied in several areas of science 

and engineering [1-2]. Some important applications of chaotic systems can be listed out such as chemical 

reactors [3-5], oscillators [6-8], neural networks [9-10], memristors [11-12], ecology [13-14], robotics 

[15-16], Tokamak reactors [17-18], finance [19-20], etc. 

In the chaos literature, there is good interest in shown in the modeling of chaotic systems with multi-

scroll attractors such as two-scroll attractors [21-25], three-scroll attractors [26-28], four-scroll attractors 
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[29-30], etc. There are also many chaotic systems with quadratic nonlinearities in the chaos literature 

[31-36]. 

In this work, we derive a new 3-D new dissipative chaotic system with three quadratic nonlinearities 

in this paper. The new chaotic system displays a two-scroll chaotic attractor. 

This paper is organized as follows. Section 2 describes the new two-scroll chaotic system with three 

quadratic nonlinearities. This section also details dynamical properties such as phase portraits, 

Lyapunov exponents and Kaplan-Yorke dimension. Section 3 describes the global chaos control of the 

new chaotic system with unknown parameters.  In Section 4, we use MultiSIM to build an electronic 

circuit realization of the new two-scroll chaotic system. The circuit experimental results of the new 

chaotic attractor show agreement with the numerical simulations. Section 5 contains the conclusions. 

2.  A new two-scroll chaotic system with three quadratic nonlinearities 
In this paper, we design a new two-scroll chaotic system with three quadratic nonlinearities given by 

1 2 1 2 3

2 1 2 1 3

3 3 1 2

( )x a x x x x

x bx x cx x

x x x x

= − +


= − +
 = − −

ɺ

ɺ

ɺ

       (1) 

where 1 2 3, ,x x x are state variables and , ,a b c are positive constants.  

In this paper, we show that the system (1) is chaotic for the parameter values 

  10,   20,   30a b c= = =        (2) 

For numerical simulations, we take the initial values of the system (1) as 

  1 2 3(0) 0.1,   (0) 0.1,   (0) 0.1x x x= = =      (3) 

Figure 1 shows the phase portraits two-scroll strange attractor of the new chaotic system (1) for the 

parameter values (2) and initial conditions (3).  Figure 1 (a) shows the 3-D phase portrait of the new 

chaotic system (1). Figures 1 (b)-(c) show the projections of the new chaotic system (1) in ( )1 2, ,x x  

( )2 3,x x and ( )1 3,x x coordinate planes, respectively. 

 

Figure 1. Phase portraits of the new chaotic system (1) for 10,  20,  30a b c= = =    
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For the rest of this section, we take the parameter values as in the chaotic case (2). 

The equilibrium points of the new chaotic system (1) are obtained by solving the system of equations 

 

2 1 2 3

1 2 1 3

3 1 2

( ) 0

0

0

a x x x x

bx x cx x

x x x

− + =


− + =
− − =

       (4) 

Solving the equations in (4) we obtain the equilibrium points of the system (1) as 

 0

0

0 ,

0

E

 
 

=  
  

 1

0.7689

0.8207 ,

0.6311

E

 
 

=  
 − 

 2

0.7689

0.8207

0.6311

E

− 
 

= − 
 − 

     (5) 

It is easy to verify that 0E is a saddle point, while 1E and 2E are saddle-focus points. 

For the parameter values as in the chaotic case (2) and the initial state as in (3), the Lyapunov 

exponents of the new 3-D system (2) are determined using Wolf’s algorithm as 

 1 2 30.4260,   0,   12.4260L L L= = = −      (6) 

Since 1 0,L > the new 3-D system (1) is chaotic. Thus, the system (1) exhibits a two-scroll chaotic 

attractor. Also, we note that the sum of the Lyapunov exponents in (6) is negative. This shows that the 

new two-scroll chaotic system (1) is dissipative. 

The Kaplan-Yorke dimension of the new 3-D system (1) is determined as 

 1 2

3

2 2.0343,
| |

KY

L L
D

L

+
= + =       (7) 

which indicates the complexity of the new two-scroll chaotic system (1). 

Figure 2 shows the Lyapunov exponents of the new chaotic system (1) with a strange attractor.  

  

Figure 2. Lyapunov exponents of the new chaotic system (1) for 10,   20,   30a b c= = =  
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3.  Global chaos control of the new two-scroll chaotic system via adaptive control method   
In this section, we devise adaptive controller so as to globally stabilize all the trajectories of the new 

two-scroll chaotic system. The main result is proved via Lyapunov stability theory. 

In this section, we consider the controlled chaotic system given by 

1 2 1 2 3 1

2 1 2 1 3 2

3 3 1 2 3

( )x a x x x x u

x bx x cx x u

x x x x u

= − + +


= − + +
 = − − +

ɺ

ɺ

ɺ

       (8) 

where 1 2 3, ,x x x are the states and ,a b are unknown parameters. 

We consider the adaptive control defined by 

   

1 2 1 2 3 1 1

2 1 2 1 3 2 2

3 3 1 2 3 3

ˆ( )( )

ˆ ˆ( ) ( )

u a t x x x x k x

u b t x x c t x x k x

u x x x k x

= − − − −


= − + − −
 = + −


      (9) 

where 1 2 3, ,k k k are positive gain constants. 

Substituting (9) into (8), we obtain the closed-loop system 

1 2 1 1 1

2 1 1 3 2 2

3 3 3

ˆ[ ( )]( )

ˆ ˆ[ ( )] [ ( )]

x a a t x x k x

x b b t x c c t x x k x

x k x

= − − −


= − + − −
 = −

ɺ

ɺ

ɺ

     (10) 

We define the parameter estimation errors as 

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

e t a a t

e t b b t

e t c c t

= −


= −
 = −


        (11) 

Using (11), we can simplify (10) as 

1 2 1 1 1

2 1 1 3 2 2

3 3 3

( )
a

b c

x e x x k x

x e x e x x k x

x k x

= − −


= + −
 = −

ɺ

ɺ

ɺ

       (12) 

Differentiating (11) with respect to ,t we obtain 

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

e t a t

e t b t

e t c t

 = −



= −


= −

ɺɺ

ɺ
ɺ

ɺɺ

        (13) 

Next, we consider the Lyapunov function defined by 

( ) ( )2 2 2 2 2 2

1 2 3 1 2 3

1
, , , , ,

2
a b c a b cV x x x e e e x x x e e e= + + + + +     (14) 

which is positive definite on 
6 .R  

Differentiating V along the trajectories of (12) and (13), we obtain 

  
2 2 2

1 1 2 2 3 3 1 2 1 1 2 1 2 3
ˆˆ ˆ( )   

a b c
V k x k x k x e x x x a e x x b e x x x c    = − − − + − − + − + −     

ɺɺ ɺɺ  (15) 
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In view of the equation (15), we take the parameter update law as  

  

1 2 1

1 2

1 2 3

ˆ ( )

ˆ

ˆ

a x x x

b x x

c x x x

 = −



=


=

ɺ

ɺ

ɺ

        (16) 

Theorem 1. The novel two-scroll chaotic system (8) is globally and exponentially stabilized by the 

adaptive control law (9) and the parameter update law (16), where 1 2 3, ,k k k  are positive constants.  

 Proof.  The Lyapunov function V  defined by (14) is quadratic and positive definite on 
6 .R  

 By substituting the parameter update law (16) into (15), we obtain the time-derivative of V as 

  
2 2 2

1 1 2 2 3 3V k x k x k x= − − −ɺ        (17) 

which is negative semi-definite on 
6 .R  

Thus, by Barbalat’s lemma [37], it follows that the closed-loop system (15) is globally exponentially 

stable for all initial conditions 
3(0) .x ∈R  This completes the proof.    

For numerical simulations, we take the gain constants as 10
i

k = for 1, 2,3.i =  

We take the parameter values as in the chaotic case (2), i.e. 10,a = 20b = and 30.c =  

We take the initial conditions of the states of the novel chaotic system (8) as 1(0) 12.3,x =

2(0) 7.4x = and 3(0) 19.2.x = We take the initial conditions of the parameter estimates as   ˆ(0) 4.7,a =  

ˆ(0) 10.4b = and ˆ(0) 5.8.c =  

Figure 3 shows the time-history of the controlled states 1 2 3, ,x x x . Thus, Figure 3 illustrates the 

control law stated in Theorem 1 for the global chaos control of the novel chaotic system (8). 

 

Figure 3. Time-history of the controlled chaotic system (8) 
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4.  Circuit implementation of the new two-scroll chaotic system 

In this section, the new two-scroll chaotic system (1) is designed as an electronic circuit as seen on 

Figure 4 and set in MultiSIM. As seen on Figure 4, 3 integrators, 3 multipliers and 2 inverters were 

used in the circuit in order to implement 3 differential equations that make up the chaotic system. By 

applying Kirchhoff's circuit laws, the corresponding circuital equations of the designed circuit can be 

written as:: 

 















−−=

+−=

+−=

21

83

3

73

3

31

62

2

52

1

42

2

32

31

1

21

2

11

1

10

11

10

111

10

111

xx
RC

x
RC

x

xx
RC

x
RC

x
RC

x

xx
RC

x
RC

x
RC

x

ɺ

ɺ

ɺ

              (18) 

 

In system (18), the variables x1, x2, and x3 are the outcomes of the integrators U1A, U2A, U3A. The 

circuit components have been selected as: R1 = R2 = R3 = R8 = 40 kΩ, R5 = R7 = 400 KΩ, R4 = 20 KΩ, R6 

= 1.33 KΩ, R9  = R10 = R11 = R12 = 100 KΩ, C1 = C2 = C3 = 1 nF. The supplies of all active devices are 

±15 Volt. The obtained results are presented in Figures 5 (a) - (c), which show the phase portraits of the 

chaotic attractor in x1-x2, x2-x3 and x1-x3 planes, respectively. Numerical simulations (see Figure 1) are 

similar with the circuital ones (see Figure 5). 

 

 
 

Figure 4 Circuit design for new two-scroll chaotic system (1) by MultiSIM 
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(c) 

 

Figure 5 The phase portraits of new two-scroll chaotic system (1)  

observed on the oscilloscope in different planes (a) x1-x2, 

 (b) x2-x3plane and (c) x1-x3 plane by MultiSIM 

 

5.  Conclusions 
This work described a new two-scroll chaotic system with three quadratic nonlinearities. First, the 

qualitative properties of the new two-scroll chaotic system are detailed. Dynamical behaviors of the new 

two-scroll chaotic system with three quadratic nonlinearities are investigated through equilibrium 

points, projections of chaotic attractors, Lyapunov exponents and Kaplan–Yorke dimension. In addition, 

the adaptive control scheme of the new two-scroll chaotic system is shown via adaptive control 

approach. Furthermore, an electronic circuit realization of the new two-scroll chaotic system using the 

electronic simulation package MultiSIM confirmed the feasibility of the theoretical model. 
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