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Abstract. Disaggregation use to separate and classify the data based on certain characteristics 

or on administrative level. Disaggregated data is very important because some indicators not 

measured on all characteristics. Detailed disaggregation for development indicators is important 

to ensure that everyone benefits from development and support better development-related 

policymaking. This paper aims to explore different methods to disaggregate national 

employment-to-population ratio indicator to province- and city-level. Numerical approach 

applied to overcome the problem of disaggregation unavailability by constructing several spatial 

weight matrices based on the neighbourhood, Euclidean distance and correlation. These methods 

can potentially be used and further developed to disaggregate development indicators into lower 

spatial level even by several demographic characteristics. 

1.  Introduction 

The 17 Sustainable Development Goals (SDGs) build on the successes of the previous eight Millennium 

Development Goals (MDGs), while including new areas such as climate change, economic inequality, 

innovation, sustainable consumption, peace and justice, among other priorities. Despite substantial 

progress has been made on many of MDGs, the progress has been uneven across regions and countries 

[1]. Millions of people are being left behind, especially the poorest and the vulnerable groups because 

of their gender, age, disability, ethnicity or geographic location.  

Learning from MDGs, one of the highlights of SDGs is “leaving no one behind”. It can be seen that 

the SDGs targets itself requires more disaggregated data by several demographic characteristics as 

mentioned above. Since disaggregation are not available for MDGs indicator, there will be a limitation 

to analyze both SDGs and MDGs data together for monitoring and research purpose. It is indeed 

important to have disaggregation as detail as possible for development indicators in order to (i) ensure 

that the benefit of the development reach everyone and (ii) assist the formulation of better policy to 
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achieve the goals and targets. However, the important point is that disaggregation according to these 

dimensions would not be relevant for all indicators [2]. 

This study focus on estimating development indicator at the local level. The local level is the 

geographical level at which data are requested with a view to planning sub-regional policies or 

evaluating the results of policy [3]. Spatial disaggregation methods are based on area interpolation 

techniques. The spatial relationship imposed in disaggregation data process. This way used in all such 

techniques to decrease error value [4]. Several methods are proposed and piloted to spatially 

disaggregate one of important indicators in development goals, which is employment-to-population 

ratio. Employment-to-population ratio is one of indicators for the second target of Goal 1 Eradicate 

poverty and hunger: achieve full and productive employment and decent work for all, including women 

and young people. The national-to-province and province-to-city disaggregation has been done using 

2011 data. 

2.  Simple Proportion 
One of disaggregation method is weighted method. Weighting method using proportion is the simplest 

approach for disaggregating data. This method assumes that target variable (Yi) is uniformly distributed 

in each area. The target variable can be estimated as [5], 

�� = ���̅ � (1) 

 

Where, 

i = 1, 2, …, n,  �� : value of indicator for unit i � : value of MDGs indicator in higher level �� : value of non-MDGs indicator for unit i �̅ : average value of non MDGs indicator in higher level 

Note that �� is a variable that highly correlated or has similar pattern with respective MDGs indicator. 

For this study, proportion of working population to the total population is used as ��. 
3.  Numerical Method Approach 
In this approach, numerical method principle is applied. There are two categories in numerical methods, 

direct methods and iterative methods. Direct methods give exact solution of problem without rounding 

error. Iterative methods find solution from a sequence of approximation solutions. This method using 

starting point Y(�) and generate sequence of approximate solutions �(
). The latest approximations to 

the components of Y are used in the update of subsequent components [6]. The simple proportion defined 

in previous subsection can be considered as the initial value �(�). 
In this paper, numerical method used is iterative method. Iterative methods generate a sequence of 

approximations to the desired solution, often referred as successive approximation or trial and error 
method. This method is start with a function, which maps one approximation into another better. In this 
way a sequence of possible solutions to the problem is generated. The approximation obtained 
acceptably accurate when the solution is convergent. [7] The sequence is said to converge to the limit if �� − �(
)� < �. Iterative methods to find a sequence of approximation solutions following 

 ���(
��) = � ∗ ���(
) (2) ���(
) = ���(
) ��(
) ⋯ ��(
)��
 (3) 

��(�) = ���̅ � (4) 

�̅ = ∑ �������  (5) 

 
W is a spatial weight matrix {wij} and ���(
) is k-th iteration value of indicator in i-th area. 
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Stopping rule is defined as if ����(
) − ���(� !"�#)� < �, for any small real values ε > 0. This approach 
is used by knowing the real values so that how good this approach can be identified. From this result 
then data disaggregation to smaller areas can be executed using the same approaches. 

The most important thing in numerical method approach for data disaggregation is determining the 
spatial weight matrix. The spatial weights matrix is an integral part of spatial modeling and defined as 
the formal expression of spatial dependence between observations [8]. There are several methods can 
be used to construct the spatial weight matrix. Based on Tobler’s first law said that everything is related 
to everything else, but near things are more related than distant things [9]. Therefore, in this paper several 
methods of constructing spatial weight matrix using geographical proximity between areas are 
experimented. 

3.1.  Neighbourhood Based 

Nearest neighbor method uses the simplest way to determine the weight. This method uses the 

determination of spatial unit share a boundary or not. The next step is to create a matrix M which 

contains the coding between the units that have shared a boundary or not. This method also called as 

rook contiguity [10].  

' = ()�*+ = ,)�� ⋯ )��⋮ ⋱ ⋮)�� ⋯ )��/ (6) 

 )�* = 01 location :!; and =!; share the same borderline0 otherwise  (7) 

 
In most cases it is convenient to normalize spatial weights to remove dependence on extraneous scale 

factors. This produces row normalization matrix called matrix W. 

E = F:GH I 1∑ )�*�*�� , 1∑ )�*�*�� , … , 1∑ )�*�*�� L (8) 

 � = E ∗ ' (9) 

3.2.  Euclidean Based 

Geographical proximity can be measured using distance. The most common distance, Euclidean 

distance, is applied in this paper. Given x and y is longitude and latitude coordinate, respectively, below 

is the formula for calculating the distance between the two units [11]. 

F�* = M�N� − N*�� + �P� − P*��
 (10) 

The problem is there is no maximum limit value of the distance, so that the distance values must be 
normalized to obtain a spatial weight matrix as follow.  

Q�* =
RST
SU 0 :V : = =

W 11 + F�*X
∑ W 11 + F�*X����

:V : ≠ = (11) 

3.3.  Correlation Based 

Methods based on correlation are desirable if the relationships among original distances do not follow a 

mathematically predictable pattern or are thought to be non-linear. The correlations do not change when 

distances are transformed [12]. Define correlation matrix of intended units based on data history and 

construct a distance matrix D as follow: 

F�* = M2 ∗ �1 − [�*��
 (12) 



4

1234567890‘’“”

IORA-ICOR 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 332 (2018) 012049 doi:10.1088/1757-899X/332/1/012049

 

 

 

 

 

 

Where [�* is sample correlation between location i-th and j-th. For obtaining this correlation, the 
history data (previous observations) of respective MDG’s indicator are needed. Two units which have 
higher correlation means the distance between two units are nearer. So, spatial weight matrix is 
improved by the correlation among neighbors who shared a boundary. 

Q�* = )�* F�*\�
∑ )�
  F�
\��
��
]�

 (13) 

4.  Data and Methods 

In this research, the MDGs indicator data used are the employment to population ratio index in 2011 for 

the national level and province level. The provincial level used are DKI Jakarta and West Java. The data 

will be disaggregated from national to province and from province to city. Non-MDGs indicator data 

that used are proportion of working population to the total population in 2011 and administrative map 

of Indonesia, DKI Jakarta and West Java. The data disaggregation is performed using simple proportion 

and spatial weighting approach. 

5.  Results and Discussion 
The focus of this section is discussing the results and evaluating the method to conclude the best method 

so far. Aggregation from national to province level has firstly been done using simple proportion and 

numerical approach with three methods of weight matrix construction explained above. The 

disaggregation models developed show different results for each province, as shown in Figure 1. There 

are little differences of estimated pattern among big islands in Indonesia. 

 

 

Figure 1. National to province disaggregation results and the actual data. 

 

Based on Figure 1, most of the models underestimate the employment to population ratios for Aceh, 

Papua and Papua Barat, and provinces situated in Sulawesi island. The highest deviation found in 

estimating the employment to population ratio of Papua Barat. Besides the underestimation, 

overestimation can be found in provinces situated in Java islands. Employment to population ratio of 

provinces in Sumatera island, Bali, and Nusa Tenggara are closely estimated, where in Bali and Nusa 
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Tenggara the variance is smaller while in Sumatera island it is higher. One of the reasons of getting 

either overestimation or underestimation is that the non-MDGs official statistics used for initial 

proportion weighting of the respective provinces have different pattern with the employment-to-

population ratio. Some provinces are not really affected by their neighborhood, while some are 

influenced a lot by them. This can also lead to the higher deviation in estimating an indicator in lower 

spatial level. 

 

Table 1. National-to-province model evaluation 

Method MAE MAPE MSE 

Simple proportion 2.689 4.1 11.323 

Numerical Method Approach:    

Neighborhood-based 2.726 4.2 14.710 

Euclidean distance-based 8.347 12.9 147.018 

Correlation-based 2.615 4.0 13.319 

 

In order to evaluate the models, several statistics to measure the goodness of models have been 

calculated as shown in Table 1. The lower the value of mean average error (MAE), mean average 

percentage error (MAPE), and mean squared error (MSE), the better the model. From these three 

criterion, correlation-based numerical approach have better estimated the employment-to-population 

ratio of province-level with the lowest MAE and MAPE, 2.615 and 4 respectively. It is also noted that 

Euclidean distance-based method gives the worst estimation (highest value for the three criterion) results 

among proposed methods, which indicates that the closer distance does not lead to the higher 

dependency among locations. That neighborhood-based model is better that the Euclidean distance one 

indicates that the locations which share same administrative borderline have a bigger chance to influence 

each other’s. 

 

 

Figure 2. Province to city disaggregation results and the actual data for West Java 
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Figure 3. Province to city disaggregation results and the actual data for DKI Jakarta 

 

Province to city disaggregation are also done for DKI Jakarta and West Java using the same methods, 

showed in Figure 2 and Figure 3. Although there are some underestimations (e.g. Ciamis, Tasikmalaya) 

and a lot of overestimations, the models for West Java disaggregation can closely estimate several cities, 

for instance Majalengka, Sumedang, Indramayu, Subang, Purwakarta and Karawang. Based on the 

evaluation criterion in Table 2, simple proportion with the lowest MAE, MAPE and MSE (1.739, 3 and 

4.174 respectively) is the better method to disaggregate province level data into city level data. 

 

Table 2. Province to city model evaluation 

Province Method MAE MAPE MSE 

West Java 

Simple proportion 1.739 3 4.174 

Numerical Method Approach:    

Neighborhood-based 2.445 4.4 10.591 

Euclidean distance-based 4.061 7.1 26.938 

Correlation-based 3.062 5.5 15.834 

DKI Jakarta 

Simple proportion 5.137 7.8 31.606 

Numerical Method Approach:    

Neighborhood-based 4.490 6.7 31.592 

Euclidean distance-based 4.604 6.8 34.711 

Correlation-based 4.468 6.6 32.653 

 

However, the models for DKI Jakarta are not well estimating the employment to population ratio of 

its cities and the value for all cities are almost the same towards one number. One crucial aspects that 

affecting this result is that the weight spatial matrix developed does not suit DKI Jakarta. It can be that 

the characteristic of five cities are very similar as well as the cities share almost the same borderlines 

and almost all cities become the neighbor of others. It is obvious that the best model is the simple 

proportion one, since the weight matrix does not work well for DKI Jakarta. 

6.  Conclusion 
Spatial weighting using numerical approach can be potentially used as to estimate development 

indicators at lower spatial level. Further improvement needed in order to get the most suitable spatial 
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weight matrix, since it is indeed the most crucial part in numerical method disaggregation. Another 

important thing is finding the non-MDGs official statistics that highly correlated or have similar pattern 

with the respective MDGs indicator to construct initial proportion weight. This paper contributes well 

in proposing the methodologies of data disaggregation to monitor the achievement of development 

indicators at local level, and therefore, to make sure that no one left behind. 
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