
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ICRAMMCE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 330 (2018) 012117 doi:10.1088/1757-899X/330/1/012117

 
 

Analysis of concrete beams using applied element method 
 

Lincy Christy D*, T M Madhavan Pillai, Praveen Nagarajan 

Department of Civil Engineering, NIT Calicut, India 

*Corresponding author E-mail: lincychristyd@gmail.com 

  

Abstract. The Applied Element Method (AEM) is a displacement based method of structural 

analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the 

structure is analysed by dividing it into several elements similar to FEM. But, in AEM, 

elements are connected by springs instead of nodes as in the case of FEM. In this paper, 

background to AEM is discussed and necessary equations are derived. For illustrating the 

application of AEM, it has been used to analyse plain concrete beam of fixed support 

condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that 

the number of springs has no much influence on the results. AEM could predict deflection and 

reactions with reasonable degree of accuracy. 

1. Introduction 

The Applied Element Method was developed by Kimiro Meguro and Hatem Tagel-Din [1] during 

their research at University of Tokyo. Based on AEM, Applied Science International (ASI), has 

developed a software called ‘Extreme Loading for Structures’, using which the behavior of structures 

under extreme loads such as earthquakes, hurricanes, bomb blasts and other disasters can be studied. 

AEM is a numerical method of structural analysis similar to Finite Element Method. In AEM, 

elements are connected by a number of normal and shear springs to carry normal and shear stress 

respectively. Springs represent a certain volume of the elements; their properties, stresses and strains. 

They serve as connectors between elements. These springs can be used to model non-linear behaviour 

of concrete. A spring is detatched if the stress in it exceeds the allowable limit. By tracing the location 

of such springs, crack pattern can be found out. Therefore, behaviour of structure and crack 

propagation can be studied at all stages of loading. Also, simple modeling, relatively small 

computational time and high accuracy of results are possible with AEM [1] and [2]. 

2. Background to AEM 

In AEM, the structure is discretised into a group of elements. The elements are connected by a set of 

normal and shear springs, which are on the side of the elements. Normal springs carry normal stress 

where as shear spring transfer shear stress from one element to the other. Figure 1 shows how a 

structure is modeled in AEM. Every 2D element has 3 degrees of freedom. The translation and 

rotation along these degrees of freedom produce stresses in springs. 
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Figure 1. Discretisation and distribution of springs in AEM. 

Determination of crack pattern is one of the capabilities of AEM. The stress in every spring can be 

calculated from the displacement vector. When the stress exceeds the allowable limit, the spring is 

removed and a crack is assumed to occur at that region. The analysis is repeated with the new stiffness 

matrix without the contribution of the removed spring. Thus the crack points are determined and crack 

propagation can be captured. 

2.1. Formulation of Stiffness Matrix of 2D-Element 

With AEM, the structure is treated as an assembly of elements. Any two elements are connected by 

pairs of normal and shear springs. Springs carry stresses and strains of a certain portion of the 

elements considered. 

The spring stiffness is determined as follows: 

Stiffness, K = 
Force

Displacement
 = 

 
Stress
Strain

 × Area

Initial Dimension
 

Stiffness of normal spring, K
n
= 

E d t

a
                                                  (1) 

Stiffness of normal spring, K
s
=

G d t

a
                                                   (2) 

where, 

d is the distance between springs, t is the thickness of the element, a is the c/c distance between 

elements, E is the modulus of elasticity and G is the modulus of rigidity of the material.  

 
Figure 2. Typical rectangular elements and their degrees of freedom. 

Each element has 3 degrees of freedom - u1, u2 and u3 (as shown in figure 2). Hence a stiffness 

matrix of size 6 × 6 will be obtained for every set of springs. The global stiffness matrix KG, is 

determined by assembling the stiffness matrix of all springs used in the structure. 

2.2. Formulation of Stiffness Matrix by Physical Approach 

The necessary details for the formulation of stiffness matrix is given in this section. For more details, 

reference [3] can be referred. First the stiffness matrix (K') is computed for the displacements in the 

local system (represented by u') shown in figure 3. The components of local stiffness matrix are 

calculated by applying unit displacement along one degree of freedom one at a time and determining 

forces corresponding to other degrees of freedom while the other degrees of freedom are restrained. 

equation (3) gives the local stiffness matrix of the spring (K'). 
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Figure 3. Local degrees of freedom. Figure 4. Global and Local degrees of freedom. 
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 -Kn 0 KnLcos α Kn 0 -KnLcos α         (3) 
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 KnLcos α KsLsin α 
-KnL2cos2 α 

+ KsL2sin2 α 
-KnLcos α -KsLsin α 

KnL2cos2 α 
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The local stiffness matrix is transformed into stiffness matrix of the spring corresponding to the 

global coordinates using the transformation matrix (T) determined as per figure 4. Equation (4) gives 

the transformation matrix. 

 cos ∅ sin ∅ 0 0 0 0  

 -sin ∅ cos ∅ 0 0 0 0  

T = 0 0 1 0 0 0 (4) 

 0 0 0 cos ∅ sin ∅ 0  

 0 0 0 -sin ∅ cos ∅ 0  

 0 0 0 0 0 1   

where,          ∅ =  θ + α – 90 

Now, Stiffness Matrix of the spring, K = TT  K' T               (5) 

The stiffness matrix thus obtained is for a single set of spring.  The sum of the stiffness matrix of 

all the springs in each face will give the stiffness matrix for the corresponding degrees of freedom.  

The stiffness matrices are then assembled to form the global stiffness matrix KG. 

The governing equation is: 

[KG][∆] = [F]      (6) 

where, ∆ is the displacement vector and F is the force vector 

3. Analysis of Plain Concrete Beam 

Plain concrete beams is analysed in two different ways. In the first case, beam is divided along the 

length direction only. The beam is divided along both length and depth direction in the second case. 

3.1 Analysis of beams by discretising along the length direction 

In this approach, the beam is divided into ‘n’ elements. The degrees of freedom are assigned to all 

the elements as shown in figure 5. The stiffness of normal spring and shear spring are determined 

using Eqs. (1) and (2). The 6×6 stiffness matrix (K1, K2,….) of all springs are calculated as given in 

equation (3). Summing up all the stiffness matrices, the total stiffness matrix (K) can be obtained.  

This matrix corresponds to the degrees of freedom u1, u2, u3, u4, u5 and u6. Similarly the total stiffness 

matrices of all the connected elements are determined. 
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Figure 5. Elements divided along the length direction. 

The global stiffness matrix is obtained by assembling the individual stiffness matrices. The global 

stiffness matrix is rearranged so that the degrees of freedom corresponding to known displacements 

are placed at left end. The unknown displacements and forces can be determined using equation (7). 

KAA KAB U1 
= 

P1 
(7) 

KBA KBB U2 P2 

where, U1 is the known displacement vector, U2 is the unknown displacement vector, P1 is the 

unknown force vector and P2 is the applied force vector. 

3.1.1 Validation. A MATLAB code was developed to get the deflection, support reaction and bending 

moments of plain concrete beams. The coding is validated by analysing a fixed beam of span 3 m and 

cross-section 200 × 400 mm. The beam is shown in figure 6. The material’s cube strength is 25 

N/mm2. The results obtained are shown in figure 7. 

 
Figure 6. Fixed beam considered for analysis. 

Theoretical Deflection (at 400 mm away from point load) = 
Px2(3l-4x)

48EI
+

3Px

4AG
= 0.0267 mm 

Theoretical Reaction = 2500 N           Theoretical End Moment = 1.875 × 106 Nmm 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 7. Results in AEM (1D discretisation). (a) Deflection vs Number of springs; (b) Deflection vs 

Number of elements; (c) Reaction vs Number of springs; (d) Reaction vs Number of elements; (e) End 

Moment vs Number of springs; (f) End Moment vs Number of elements. 

From figure 7 it is observed that for a given number of springs, deflection improved with increase 

in number of elements. It is observed that the computed deflection converges as the number of spring 

increases. Beyond 5 springs, no much improvement in result is obtained. So, it is appropriate to 

increase the number of elements rather than increasing the number of springs. The support reaction is 

accurately determined even with lesser number of elements and springs. The end moment and central 

moment converged to the theoretical value as the number of elements is increased, irrespective of the 

number of springs used. 

3.2. Analysis of Beams by discretising along the length and depth direction 

The accuracy of the result was studied by discretising the continuum in two directions. Discretisation 

of a beam into 4 elements in length direction and 3 elements in depth direction is shown in figure 8. 

When a beam is divided in two directions, stiffness of springs on all faces of the element should be 

considered as shown in figure 9. 

    
    Figure 8. 2D Discretisation.   Figure 9. Spring on all faces. 

As in the case of ID discretisation, the global stiffness matrix has to be reassembled to place the 

degrees of freedom with known displacement at the top left corner. Then the unknown displacements 

and forces can be determined using equation (7). 

3.2.1. Validation. A MATLAB code was developed to determine deflection, support reaction and 

bending moments by discretising along both length and depth direction. The fixed beam considered in 

the previous section is studied. The elements are connected using 20 pairs of connecting springs on all 

its faces. The results are shown in figure 10. 

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

No. of Springs

E
nd

 M
om

en
t (

N
m

m
)

 

 

Theoretical End Moment

61 elements

51 elements

41 elements

31 elements

21 elements

11 elements

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

No. of Elements

E
nd

 M
om

en
t (

N
m

m
)

 

 

Theoretical End Moment

20 springs

18 springs

16 springs

14 springs

12 springs

10 springs



6

1234567890‘’“”

ICRAMMCE 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 330 (2018) 012117 doi:10.1088/1757-899X/330/1/012117

 
 

  
(a) (b) 

  
(c) (d) 

Figure 10. Results in AEM (2D discretisation). (a) Deflection vs Number of elements in x-direction; 

(b) Reaction vs Number of elements in x-direction; (c) End Moment vs Number of elements in x-

direction; (d) Central Moment vs Number of elements in x-direction. 

Figure 10 shows that when a beam is discretised in length direction alone, the deflection 

determined converges towards the theoretical value. But when the number of elements in depth 

direction is more than one, the deflection determined converges to a value higher than the theoretical 

deflection. But the number of elements along y-direction does not affect support reaction and bending 

moments. As in the case of discretisation along length direction alone, the support reaction is 

accurately determined. Also, the end moment and central moment converged to the theoretical value 

as the number of elements are increased irrespective of the number of springs used. 

4. Conclusions 

In this paper, AEM was used to analyse plain concrete beams of different support conditions. The 

following conclusions were derived from the study: 

1. The results obtained using AEM became more accurate with increase in the number of elements. 

For a given number of elements the computed deflection converged when 5 or more springs were 

used. 
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2. The end moment and central moment converged to the exact value as the number of elements 

increased irrespective of the number of springs used. 

3. When the beam was divided in two directions, the variation of number of springs and elements 

along the depth direction did not affect the support reaction and bending moment. The deflection 

also converged to a reasonably good value. 
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